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Summary of Informativity

« Optimal function incorporates aspects of earlier models:

Basic cognitive limitations: serial interpretation + reanalysis

Maximising success of reaching correct interpretation

1
P(Confirm H,)

Explains why people don't always follow likelihood alone

P(global success) = HP(success atL))
A S(H,) =

Prefer to form testable (interpretable) dependencies

* These can be evaluated as plausible, or trigger reanalysis quickly

Informativity is an idealisation of what the HSPM should approximate
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Rational Models and Linking Hypotheses

* Rational Hypothesis 1: argmax P(s;) for all s, € S
i
* Rational Hypothesis 2: argmax P(s;)-S(s;) forall s, €S
i
* Implementing and evaluating more plausible “optimal functions”:
* More linguistically informed probabilistic models (lexical, semantic ...)
* Integration with non-probabilistic factors (recency, memory load)

* Richer linking functions between parser and human processing measures

* Relate the parsing mechanisms to observed processing difficulty, i.e.
reading measures, event-related potentials, fMRI

SUSAN

Claude Shannon



Information Theoretic Approaches

We can think of language as a communication system, in which
information is transmitted from speaker to hearer

Rationality suggests that language, and language use, will be optimized
to transmit information as efficiently as possible (speaker) while taking into
account cognitive limitations of the hearer.

The average amount of information conveyed by a linguistic unit
* Uncertainty of a random variable is measured by its entropy
Information Theory (Shannon)

* Finding the best “code” for sending messages of a language

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM and PPM which exchange

bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A
basis for such a theory is contained in the important papers of Nyquist! and Hartley? on this subject. In the
present paper we will extend the theory to include a number of new factors, in particular the effect of noise
in the channel, and the savings possible due to the statistical structure of the original message and due to the
nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or ap-
proximately a message selected at another point. Frequently the messages have meaning; that is they refer
to or are correlated according to some system with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual
message is one selected from a set of possible messages. The system must be designed to operate for each
possible selection, not just the one which will actually be chosen since this is unknown at the time of design.



H is Entropy = ...

How much information is conveyed by a particular message, event,
outcome? 8 ,

The number of yes-no questions (or bits)
required to specify the state of the system

Entropy
R

If n is the number of equally likely states
of the system:

o2
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H = logz[n] jﬁ
o
H =-log,|—
n. ]
H = _10g2 : p : (]>0 0 02 06 08 1

Entropy for Non-Unitorm Events

Information: for a given language

* The number of bits needed to send a message, on average

Optimal code for an event having probability p(x) is: {log2 (1 )l
pP\X

The average number of bits needed to transmit a message

in a language X is:

1
e Entropy: H(X) = 1 ,
oy: H(X) ;Xpu) %



Example 1: 8-sided die

* Let x represent the result of rolling a (fair) 8-sided die.

1
* Entropy: H(X)= ) p(x)log, —
;X * p(x)
1 1
H(X) = Eglogzz =log,8=3
xeX 8

* The average length of the message required to transmit one of 8
equiprobable outcomes is 3 bits.

B~ S L Y A <
001 010 011 100 101 110 111 000

Entropy of a Weighted Coin

1
H(X) = log, ——
(X) ;Xpu) %

* The more uncertain the result,
the higher the entropy.

* Fair coin: H(X)=1.0

* The more certain the result, the lower the entropy.

* Completely biased coin: H(X) = 0.0
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Example: Simplified Polynesian

T K A I U

0,125 0,25 0,125 0,25 0,125 0,125

H(X) =~ Y, p(x)log, p(x)

xeX

1, 1 1, 1
=—[4x—log—+2x—log—
| 8 g8 4 g4]

=21bﬁs
2
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Example 2: Simplified Polynesian

P T K A | U
o125 025 [ofs 025 (0125 0125
H(X) ==Y p(x)log, p(x)

x&eX

ol

1. .
= zibm Recall: H = log2(6)
= 2.585 bits
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Example 2: Simplified Polynesian

* Simplified Polynesian:

H(X) ==Y p(x)log, p(x)
P T K A | U 1’“@‘1 L
0,125 0,25 0,125 0,25 0,125 0,125 |=—[4 x—log—+2x—log—]
8 8 4 4
1
=2 —Dbits
2
« Coding Tree:
/\
t a 100 101 110 111
o K i u
13
1 1 2 1
3/4 3/4
= =
e o
T1/2 T1/2
o o
o o
1/4 1/4
0 0
Black Red Green Black Red Green
3 1 4 1
3/4 3/4
2 2
ol 3
T1/2 T1/2
o o
o o
0 0
Black Red Green Black Red Green
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Surprisal & Psycholinguistics

In addition to measuring the average information for a language, we can
of course measure the information conveyed by any given linguistic
unit (e.g. phoneme, word, utterance) in context. This is often called
surprisal:

1

Surprisal(x) =10
P ) &2 P(x | context)

Surprisal will be high, when x has a low conditional probability, and low,
when x has a high probability.

Claim: Cognitive effort required to process a word is proportional to its
surprisal (Hale, 2001).
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Predictability & Integration

Surprisal theory: expected words will be easier to process:
* their predictability reflects amount of information conveyed

This has broad empirical support from psycholinguistics, where Cloze
probability (Taylor, 1953) correlate with reading times and N400 ERPs:

* My brother came inside to ... chat? eat? play? rest?
« The children went outside to ... chat? eat? play? rest?

Evidence of anticipatory processing is also found in visual world experiments,
where people look at the visual referents of words likely to be mentioned next:

e The boy will eat the ... [more looks to cake, than other objects]
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Computing Surprisal

Surprisal ,, =-log P(w,,, Iw,...w,)

* There are various ways we can compute surprisal from different kinds of
underlying probabilistic language models

* N-gram surprisal:

Surprisal(w,,,) =-log, p(w,,, Iw,_,,w,_,,w,)
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Parse Surprisal

* We can also show how define surprisal in terms of the probabilities
recovered by a probabilistic grammar/parser:

Surprisal ,, =-log, P(w,,, lw,...w,)

=log, P(w,...w,)-log, P(w,...w_,,)
= 10g2 EP(T,Wl...Wk)—Ing EP(T’Wl“'wkH)
T T

= prefprob,, — prefprob,,
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Hale 2001

Hale proposed that surprisal measures determined by an incremental
probabilistic Earley parser offer a psychologically plausible index of effort.

prefprob, =-log, E p(Tlw,...w,)
T

Surprisal, = prefprob, - prefprob,
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Hale proposed that surprisal measures determined by an incremental
probabilistic Earley parser offer a psychologically plausible index of effort.

prefprob,, =log, 2 p(Tlw,..w)
T

Surprisal, = prefprob, , - prefprob,,

* When fell is encountered, the higher

* This results in a large drop in the prefix
probability as we process word n

probability parse is eliminated.
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Hale 2001: Results (toy)

* Hale proposed that surprisal measures determined by an incremental
probabilistic Earley parser offer a psychologically plausible index of effort.

prefprob, =log, E p(Tlw,..w) S
T /\
Surprisal, = prefprob,, , - prefprob,, /NP\ vP
o previous prefix DT NN VED Bp
current prefix garden-pathing TLe ho‘rse [
raced past the barn
14 |
S
12
10 | /\
8l NP VP
6l 5.90627
NP VP
4 PN
ol ; ; D|T NlN VBN PP
n l_l 0.190684.0641303 n I_I The horse ra(|:3d ﬁ
the horse raced past the barn feII2
;.pre'aous prefix
current prefix Subject Relatve Clause 6.87758
’ 0.574927953937 S — NP VP
5 0.425072046063 S — VP
) S 1.0 SBAR — WHNP S
— 0.80412371161 NP — DT NN
: 0.082474226966 NP — NP SBAR
2 1.59945 13242 1.58946 0.113402061424 NP — NP VP
- . 0.11043 VP —  VBD PP
] ED |:| 0.141104 VP — VBD NP PP
the banker who was told about 'xfﬁu,' badesignec 0.214724 VP — AUX VP
0.484663 VP — VBN PP
Figure 4: Mean 10.5 0.0400798 vP =t VED
1.0 PP — IN NP
g VST 1.0 WHNP —  who
current prelix Reducad Relative Clause 6.67629 1 . 0 DT — th e
6 0.33 NN —  boss
sl 0.33 NN —  banker
0.33 NN —  buy-back
‘1 0.5 IN —  about
2 0.5 IN — by
2 158346 13012 1.59048 1.0 AUX — was
1 | 0798547 0522262 0.74309393 VBD —  told
[ ] ] R 0.25690607 VBD —  resigned
the  banker  tok about the  Ruy-back resigned 1.0 VBN — tOld

Figure 5: Mean: 16.44
22



Hale 2001: Results (Brown)

surprisal

12 14 16

10

Hale proposed that surprisal measures determined by an incremental
probabilistic Earley parser offer a psychologically plausible index of effort.

prefprob, =log, E p(Tlw,..w)
T

Surprisal, = prefprob,, , - prefprob,, Np/\vp

- bF RN
| | VBD PP
4 The horse ‘ A
raced past the barn
S
\
\
i \ ’I /\
N - NP VP
- reduced /\
] = « unreduced NP VP
r T T T T T T T T 1 DT/\NN
The horse that was raced past the barn fell . | | VBN T
The horse |
raced past the barn
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Unambiguous example

For example, it is well known that subject relative clauses are processed
more easily than object relatives:

The reporter who attacked the senator <"
The reporter who the senator attacked

previous prefix previous prefix

]
cusrlent prefix Subject Relative Clause 9 yrrent prafix Object Relative Clause
5
452793
4 4
3 3l
2 | 150946 159946 159946 2 b, 50046 1.50946
1 1. . 3
1
0.203159
- O 0.
the  man who saw you saw = me the mam who you saw saw me
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Syntactic Surprisal

—11y _ .
— log(1.7766 x 10 ) =35.712 How to calculate surprisal:
/\ » Calculate prefix probabilities:
NP VP ppw, = — log g p(T|wy...wy)
DT/\NN . T € Trees
| | VBD PP » Surprisal s of word w,:
| — _
The  horse raced past the barn Sw, = PPw, — PPw,_,

— log(1.06596 x 107 %) = 49.736
S Example PCFG:

Rule Probability of rule
S — NP VP p=0.6
VBD — raced p = 0.0005

NP VP VBN —s raced  p = 0.000001
/\ DT — the p=0.7
NP VP
N
DlT NlN VBN PP
The horse |
aced past the barn

sum of both: pp,, = 35.712

Syntactic Surprisal

How to calculate surprisal:

PPw, ; = — log(1.06596 x 10~ x 0.003)
= 58.12 » Calculate prefix probabilities:
S
PPw, = — |Og Z p(T‘Wl ce Wn)
. T € Trees
» Surprisal s of word w,:
NP VP _
| Sw, = PPw, — PPw,_,
/\ v
/NP\ VP iy Example PCFG:
DT NN Rule Probability of rule
| | VBN PP S — NP VP p=0.6
The horse Ly =i VBD — raced  p = 0.0005
VBN — raced p = 0.000001
DT — the p=0.7




Syntactic Surprisal

PPuy,, = — log(1.06596 x 1015 x 0.003) How to calculate surprisal:

= 58.12 » Calculate prefix probabilities:

PPw, = — |Og Z p(T‘Wl R Wn)
. TE Trees
/\ » Surprisal s of word w,,:
sWn:pan_panfl
/\ V

I
fell Example PCFG:
DT/\NN /\ Rule Probability of rule

| | VBN S — NP VP p=0.6
The  horse | VBD — raced p = 0.0005
VBN — raced p = 0.000001
DT — the p=0.7

raced past the barn

pPPw,_, = 35.712
PPw, = 58.12

surprisal(w,) = 22.41 » Predictions also depend on
n) = 22.

parametrization of the grammar,
training

Lexical vs. structural surprisal

—11y __

/\ = 58.12
NP VP
DT/\NN /\ /\
VBD PP

|
The horse | A
raced past the barn /\ V
|

— log(1.06596 x 10~ %) = 49. 736 /\ /\ fell
DT NN

I I
The horse | A
raced past the barn

PPw,_, = 35.712

NP PPw, = 58.12
sal(w,) = 22.41
N ; BN/\ surprisal(w;,)
I I
The  horse Some of the surprisal is due to the lexical

ced past the barn ) ] L.
identity of fell, and some of it is due to

the syntactic structural information

sum of both: pp,, = 35.712
conveyed by that word.




Lexical vs. structural surprisal

A \|/
DT/\NN /\ fell

| | VBN
The horse |
raced past the barn
Tlwy ... w,
SW,, - —|Og Z pg_ ‘Wl W)
T € Trees P( ’Wl T W”_l)
(T .POS,
structS,, = —log Z Z p( T\W1 )
POS,cPOS T€ Trees (Tlwy ... wp_1)
T’Wl )
lexS,, = —I
XOw, og Z Z T‘Wl POSn)

POS,ePOS Te Trees



