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Summary of Informativity
• Optimal function incorporates aspects of earlier models: 

• Basic cognitive limitations: serial interpretation + reanalysis 

• Maximising success of reaching correct interpretation 
 
 
 

• Explains why people don’t always follow likelihood alone 

• Prefer to form testable (interpretable) dependencies 

• These can be evaluated as plausible, or trigger reanalysis quickly 

• Informativity is an idealisation of what the HSPM should approximate
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I(Hi) = P(Hi) ⋅ S(Hi)

S(Hi) =
1

P(Confirm Hi)
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P(global success) = P(success at Li)
i=1

n

∏



Rational Models and Linking Hypotheses
• Rational Hypothesis 1:  

• Rational Hypothesis 2: 

• Implementing and evaluating more plausible “optimal functions”: 

• More linguistically informed probabilistic models (lexical, semantic ...) 

• Integration with non-probabilistic factors (recency, memory load) 

• Richer linking functions between parser and human processing measures 

• Relate the parsing mechanisms to observed processing difficulty, i.e. 
reading measures, event-related potentials, fMRI
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P(si) for all si ∈ S

argmax
i

P(si ) ⋅S(si ) for all si ∈ S
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Information Theoretic Approaches
• We can think of language as a communication system, in which 

information is transmitted from speaker to hearer 

• Rationality suggests that language, and language use, will be optimized 
to transmit information as efficiently as possible (speaker) while taking into 
account cognitive limitations of the hearer. 

• The average amount of information conveyed by a linguistic unit 

• Uncertainty of a random variable is measured by its entropy 

• Information Theory (Shannon) 

• Finding the best “code” for sending messages of a language
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Reprinted with corrections from The Bell System Technical Journal,
Vol. 27, pp. 379–423, 623–656, July, October, 1948.

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM and PPM which exchange
bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A

basis for such a theory is contained in the important papers of Nyquist1 and Hartley2 on this subject. In the
present paper we will extend the theory to include a number of new factors, in particular the effect of noise
in the channel, and the savings possible due to the statistical structure of the original message and due to the
nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or ap-
proximately a message selected at another point. Frequently the messages havemeaning; that is they refer
to or are correlated according to some system with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual
message is one selected from a set of possible messages. The system must be designed to operate for each
possible selection, not just the one which will actually be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any monotonic function of this number
can be regarded as a measure of the information produced when one message is chosen from the set, all
choices being equally likely. As was pointed out by Hartley the most natural choice is the logarithmic
function. Although this definition must be generalized considerably when we consider the influence of the
statistics of the message and when we have a continuous range of messages, we will in all cases use an
essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:

1. It is practically more useful. Parameters of engineering importance such as time, bandwidth, number
of relays, etc., tend to vary linearly with the logarithm of the number of possibilities. For example,
adding one relay to a group doubles the number of possible states of the relays. It adds 1 to the base 2
logarithm of this number. Doubling the time roughly squares the number of possible messages, or
doubles the logarithm, etc.

2. It is nearer to our intuitive feeling as to the proper measure. This is closely related to (1) since we in-
tuitively measures entities by linear comparison with common standards. One feels, for example, that
two punched cards should have twice the capacity of one for information storage, and two identical
channels twice the capacity of one for transmitting information.

3. It is mathematically more suitable. Many of the limiting operations are simple in terms of the loga-
rithm but would require clumsy restatement in terms of the number of possibilities.

The choice of a logarithmic base corresponds to the choice of a unit for measuring information. If the
base 2 is used the resulting units may be called binary digits, or more briefly bits, a word suggested by
J. W. Tukey. A device with two stable positions, such as a relay or a flip-flop circuit, can store one bit of
information. N such devices can storeN bits, since the total number of possible states is 2N and log2 2N N.
If the base 10 is used the units may be called decimal digits. Since

log2M log10M log10 2
3 32log10M

1Nyquist, H., “Certain Factors Affecting Telegraph Speed,” Bell System Technical Journal, April 1924, p. 324; “Certain Topics in
Telegraph Transmission Theory,” A.I.E.E. Trans., v. 47, April 1928, p. 617.

2Hartley, R. V. L., “Transmission of Information,” Bell System Technical Journal, July 1928, p. 535.
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H is Entropy = …
• How much information is conveyed by a particular message, event, 

outcome?  

• The number of yes-no questions (or bits) 
required to specify the state of the system 

• If n is the number of equally likely states 
of the system:
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Entropy for Non-Uniform Events
• Information: for a given language 

• The number of bits needed to send a message, on average 

• Optimal code for an event having probability             is:   

• The average number of bits needed to transmit a message 
in a language X is: 

• Entropy:
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H(X) = p(x) log2
1
p(x)x∈X
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Example 1: 8-sided die
• Let x represent the result of rolling a (fair) 8-sided die. 

• Entropy: 

• The average length of the message required to transmit one of 8 
equiprobable outcomes is 3 bits. 
 
       “1”   “2”   “3”    “4”   “5”   “6”   “7”   “8”  
       001  010  011  100  101  110  111  000 

H(X) = p(x) log2
1
p(x)x∈X

∑

H(X) =
1
8
log2

1
1
8x∈X

∑ = log2 8 = 3
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Entropy of a Weighted Coin

• The more uncertain the result, 
 the higher the entropy.    

• Fair coin:  H(X) = 1.0 

• The more certain the result, the lower the entropy. 

• Completely biased coin:  H(X) = 0.0

H(X) = p(x) log2
1
p(x)x∈X

∑
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Example: Simplified Polynesian
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€ 

H(X) = − p(x)log2 p(x)
x∈X
∑

= −[4 × 1
8
log 1
8

+ 2 × 1
4
log 1

4
]

= 2 1
2
bits

P T K A I U

0,125 0,25 0,125 0,25 0,125 0,125

Example 2: Simplified Polynesian
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€ 

H(X) = − p(x)log2 p(x)
x∈X
∑

= −[4 × 1
8
log 1
8

+ 2 × 1
4
log 1

4
]

= 2 1
2
bits Recall: H = log2(6) 

= 2.585 bits

P T K A I U

0,125 0,25 0,125 0,25 0,125 0,125



Example 2: Simplified Polynesian
• Simplified Polynesian: 

• Coding Tree:

€ 

H(X) = − p(x)log2 p(x)
x∈X
∑

= −[4 × 1
8
log 1
8

+ 2 × 1
4
log 1

4
]

= 2 1
2
bits

                   qp 
       3               qp 

    00            01    3                 3 

     t               a  100          101         110           111 
                            p             k             i                 u
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P T K A I U
0,125 0,25 0,125 0,25 0,125 0,125

1. 2.

3. 4.

14



Surprisal & Psycholinguistics
• In addition to measuring the average information for a language, we can 

of course measure the information conveyed by any given linguistic 
unit (e.g. phoneme, word, utterance) in context. This is often called 
surprisal: 

• Surprisal will be high, when x has a low conditional probability, and low, 
when x has a high probability. 

• Claim: Cognitive effort required to process a word is proportional to its 
surprisal (Hale, 2001).

Surprisal(x) = log2
1

P(x | context)

15

Predictability & Integration
• Surprisal theory: expected words will be easier to process: 

• their predictability reflects amount of information conveyed  

• This has broad empirical support from psycholinguistics, where Cloze 
probability (Taylor, 1953) correlate with reading times and N400 ERPs: 

• My brother came inside to ...                 

• The children went outside to ...        

• Evidence of anticipatory processing is also found in visual world experiments, 
where people look at the visual referents of words likely to be mentioned next: 

• The boy will eat the ... [more looks to cake, than other objects]
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chat? eat? play? rest?

chat? eat? play? rest?



Computing Surprisal

• There are various ways we can compute surprisal from different kinds of 
underlying probabilistic language models 

• N-gram surprisal:

Surprisalk+1 = − logP(wk+1 |w1…wk )

Surprisal(wk+1) = − log2 p(wk+1 |wk−2,wk−1,wk )
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Parse Surprisal
• We can also show how define surprisal in terms of the probabilities 

recovered by a probabilistic grammar/parser:

Surprisalk+1 = − log2 P(wk+1 |w1…wk )

= − log2
P(w1…wk+1)
P(w1…wk )

= log2 P(w1…wk )− log2 P(w1…wk+1)

= log2 P(T,w1…wk )
T
∑ − log2 P(T,w1…wk+1)

T
∑

= prefprobwk − prefprobwk+1
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Hale 2001
• Hale proposed that surprisal measures determined by an incremental 

probabilistic Earley parser offer a psychologically plausible index of effort.

prefprobwn = − log2 p(T |w1…wn )
T
∑

Surprisalwn = prefprobwn−1 − prefprobwn
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Hale 2001
• Hale proposed that surprisal measures determined by an incremental 

probabilistic Earley parser offer a psychologically plausible index of effort. 

•  

• When fell is encountered, the higher 
probability parse is eliminated. 

• This results in a large drop in the prefix 
probability as we process word n

prefprobwn = log2 p(T |w1…
T
∑ wn )

Surprisalwn = prefprobwn−1 − prefprobwn
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Hale 2001: Results (toy)
• Hale proposed that surprisal measures determined by an incremental 

probabilistic Earley parser offer a psychologically plausible index of effort. 

• When fell is encountered, the higher 
probability parse is eliminated. 

• This results in 

prefprobwn = log2 p(T |w1…
T
∑ wn )

Surprisalwn = prefprobwn−1 − prefprobwn

21
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Hale 2001: Results (Brown)
• Hale proposed that surprisal measures determined by an incremental 

probabilistic Earley parser offer a psychologically plausible index of effort. 

• When fell is encountered, the higher 
probability parse is eliminated. 

• This results in 

prefprobwn = log2 p(T |w1…
T
∑ wn )

Surprisalwn = prefprobwn−1 − prefprobwn
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Unambiguous example
• For example, it is well known that subject relative clauses are processed 

more easily than object relatives:
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Syntactic Surprisal

� log(1.7766 ⇥ 10
�11

) = 35.712
S

NP

DT

The

NN

horse

VP

VBD

raced

PP

past the barn

� log(1.06596 ⇥ 10
�15

) = 49.736
S

NP

NP

DT

The

NN

horse

VP

VBN

raced

PP

past the barn

VP

sum of both: ppwn = 35.712

How to calculate surprisal:

I Calculate prefix probabilities:

ppwn
= � log

X

T2Trees

p(T |w1 . . .wn)

I Surprisal s of word wn:
swn

= ppwn
� ppwn�1

Example PCFG:
Rule Probability of rule
S ! NP VP p = 0.6
VBD ! raced p = 0.0005
VBN ! raced p = 0.000001
DT ! the p = 0.7

I Predictions also depend on
parametrization of the grammar,
training

Vera Demberg and Matt Crocker (UdS) Surprisal and Human Processing April 19th, 2015 2 / 39

Syntactic Surprisal

ppwn+1
= � log(1.06596 ⇥ 10

�15 ⇥ 0.003)
= 58.12

S

NP
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DT
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NN

horse

VP

VBN

raced

PP

past the barn

VP

V
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How to calculate surprisal:

I Calculate prefix probabilities:

ppwn
= � log

X

T2Trees

p(T |w1 . . .wn)

I Surprisal s of word wn:
swn

= ppwn
� ppwn�1

Example PCFG:
Rule Probability of rule
S ! NP VP p = 0.6
VBD ! raced p = 0.0005
VBN ! raced p = 0.000001
DT ! the p = 0.7

I Predictions also depend on
parametrization of the grammar,
training
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Syntactic Surprisal

ppwn+1
= � log(1.06596 ⇥ 10

�15 ⇥ 0.003)
= 58.12

S

NP

NP

DT

The

NN

horse

VP

VBN

raced

PP

past the barn

VP

V

fell

ppwn�1
= 35.712

ppwn
= 58.12

surprisal(wn) = 22.41

How to calculate surprisal:

I Calculate prefix probabilities:

ppwn
= � log

X

T2Trees

p(T |w1 . . .wn)

I Surprisal s of word wn:
swn

= ppwn
� ppwn�1

Example PCFG:
Rule Probability of rule
S ! NP VP p = 0.6
VBD ! raced p = 0.0005
VBN ! raced p = 0.000001
DT ! the p = 0.7

I Predictions also depend on
parametrization of the grammar,
training
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Lexical vs. structural surprisal
� log(1.7766 ⇥ 10

�11
) = 35.712

S

NP

DT

The

NN

horse

VP

VBD

raced

PP

past the barn

� log(1.06596 ⇥ 10
�15

) = 49.736
S

NP

NP

DT

The

NN

horse

VP

VBN

raced

PP

past the barn

VP

sum of both: ppwn = 35.712

ppwn+1
= � log(1.06596 ⇥ 10

�15 ⇥ 0.003)
= 58.12

S

NP

NP

DT

The

NN

horse

VP

VBN

raced

PP

past the barn

VP

V

fell

ppwn�1
= 35.712

ppwn
= 58.12

surprisal(wn) = 22.41

Some of the surprisal is due to the lexical
identity of fell, and some of it is due to
the syntactic structural information
conveyed by that word.

Vera Demberg and Matt Crocker (UdS) Surprisal and Human Processing April 19th, 2015 3 / 39



Lexical vs. structural surprisal

S

NP

NP

DT

The

NN

horse

VP

VBN

raced

PP

past the barn

VP

V

fell

Swn
= � log

X

T2Trees

p(T |w1 . . .wn)

p(T |w1 . . .wn�1)

structSwn
= � log

X

POSn2POS

X

T2Trees

p(T |w1 . . .POSn)

p(T |w1 . . .wn�1)

lexSwn
= � log

X

POSn2POS

X

T2Trees

p(T |w1 . . .wn)

p(T |w1 . . .POSn)
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