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Jurafsky (1996)
• Psycholinguistic model of lexical and syntactic access and disambiguation 

• Exploits concepts from statistical parsing 

• Probabilistic CFGs 

• Bayesian modeling frame probabilities 

• Architecture: Probabilistic, bounded, parallel parser 

• Parses are “pruned” (removed from memory) if they fall outside the “beam” 

• E.g. if they are too improbable with respect to the best parse 

• Pruned parses are predicted to reflect garden-path sentences
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Frames and Constructions
“The horse raced past the barn fell.”
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Frame and Construction Probs
“The bird found died”
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Setting Beam Width

• Assumption: if the relative probability of a parse with respect to the best 
parse drops below a certain threshold, it will be pruned  

• Claim: a tree is pruned, and therefore a garden-path, if the probability 
ration is greater than 5:1
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A wide-coverage model: ICMM
• ICMM: Incremental Cascaded Markov Model (Crocker & Brants, 2000) 

• Standard HMM POS tagger for lexical categories, similar to SLCM 

• Structural probabilities computed as in a PCFG 

• Cascaded Markov Models are also used to help filter out structures 

• Wide coverage: 

• A fully implemented, wide coverage parser 

• Trained on parsed corpora: Brown, WSJ, NEGRA 

• Adapted to operate incrementally
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Stochastic Context-Free Parsing
• Probability of a parse is the product of the rules’ probabilities 

• Best parse: 

The desert trains the men ( to be tough ...)

DT NN VB DT NN

NP NP

VP

S
P(S   -> NP VP)

P(VP -> VB NP)

P(NP -> DT NN)P(NP -> DT NN)

arg max i P(si)  for all si∈S
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Probabilistic Tagging & Parsing
• Markov Models for part-of-speech tagging use “horizontal”  

probabilities: SLCM (Corley & Crocker)    P = P(Wi|Ti)xP(Ti|Ti-1) 

• Stochastic context-free grammars use 

	 “vertical” probabilities  P(DT,NN|NP) 

• Cascaded Markov Models apply “horizontal” probabilities 

	 to levels higher than parts-of-speech
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Incremental Cascaded Markov Models

652 Crocker and Brants

can explain a range of results concerning human processing of category-
ambiguous words. This present work builds directly on their approach, but
extends it beyond category disambiguation to full syntactic parsing.

CASCADED MARKOV MODELS

The basic idea of cascaded Markov models is to construct the parse
tree layer by layer, first structures of depth one, then structures of depth
two, and so forth. For each layer, a Markov model determines the best set
of phrases. These phrases are used as input for the next layer, which adds
one more layer. Phrase hypotheses at each layer are generated according to
stochastic context-free grammar rules (the outputs of the Markov model)
and subsequently filtered from left to right by Markov models.

Figure 1 gives an overview of the parsing model by showing the pro-
cessing steps for a simple example sentence taken from the Wall Street
Journal corpus (Marcus, Santorini and Marcinkiewicz, 1993). A cascaded
Markov model consists of a stochastic context-free grammar and a separate
Markov model for each layer (up to some maximum number of layers). The
first layer resolves lexical category ambiguities by tagging each word with
its most likely part-of-speech. New phrases are created at higher layers and
filtered by Markov models operating from left to right. Only those hypothe-
ses reaching a particular probability value are passed up to the next higher
layer; the others are pruned.

Fig. 1. The layered processing model. Starting with part-of-speech tagging (layer 0), possibly
ambiguous output together with probabilities is passed to higher layers (only the best hypotheses
are shown for clarity). At each layer, new phrases are added and filtered with a Markov model.
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ICMM
• Incrementally build hypotheses for all layers as soon as a word is read 

• Filter hypotheses with Markov Models

The warehouse makes the beer (than the rest ...)
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cheaper

JJR
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ICMM
• Incrementally build hypotheses for all layers as soon as a word is read 

• Filter hypotheses with Markov Models 

The warehouse prices the beer cheaper than the rest

The
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warehouse

NN
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ICMM
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ICMM
• Incremental build hypotheses for all layers as soon as a word is read 

• Filter hypotheses with Markov Models 

The warehouse prices the beer cheaper than the rest
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ICMM
• Incrementally build hypotheses for all layers as soon as a word is read 

• Filter hypotheses with Markov Models 
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Incremental Cascaded Markov Models

• Incremental (word-by-word) processing 

• Build hypotheses for all layers as soon as a word is read 

• Filter hypotheses with Markov Models

The prices the beer

DT VB DT NN
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NN

VP

cheaper
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(than the rest ...)
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Noun-Verb Ambiguity
• Initial preference based mostly on SLCM component 

“The warehouse prices the goods.”
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Noun-Verb Ambiguity
• Initial preference based mostly on SLCM component 

“The warehouse makes are cheaper.”
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Reduced Relative Clause
• Initial preference and reanalysis based purely on SLCM component 

“The man held at the station was innocent”
18



Reduced Relative Clause
• Initial preference based purely on SLCM, leads to garden path

“The man raced to the station was innocent”
19
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clause reading, since the verb would need to be interpreted with its lower
probability intransitive frame. Figure 8, in contrast, shows that for intransitive
items like (3b), the prepositional phrase provides no such cue. The intransitive
VP of the main clause analysis is consistent with the verbs preferred usage.

In related work, McRae et al. (1998) argue for a fully constraint-based
model of sentence processing, in which all relevant linguistic constraints
are immediately recruited to resolve ambiguity. Specifically, he uses the
competition-integration model (Spivey-Knowlton, 1996) to fit off-line biases
for several linguistic constraints to reading times for reduced relative-clause
sentences, such as those in example (4).

(4a) The crook arrested by the detective was guilty of taking bribes.
(4b) The cop arrested by the detective was guilty of taking bribes.

Fig. 7. Parse probabilities or the reduced relative ambiguity for a transitive-biased verb like held.

Fig. 8. Parse probabilities of the reduced relative ambiguity for an intransitive-biased verb like raced.
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Probabilistic Models, so far ...
• Three models, explain both good performance & many “pathologies” 

• SLCM: a hidden Markov model of lexical category disambiguation 

• Jurafsky: probabilistic models of parsing and lexical access  

• Combines structure & frame probabilities, not wide coverage. 

• ICMM: implementation of a wide-coverage probabilistic parser: 

• Combines “phrase structure”, and “phrase sequence” probabilities 

• Also: incremental, bounded probabilistic parsers don’t lose accuracy, and 
are much more space/time efficient.
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Challenges for Likelihood Models
• So far, we’ve assume that the rational human syntactic processor seeks to optimise 

(incremental) parse likelihood: 

• Is this always the case? Recall evidence from non-probabilistic models 

• Minimal attachment: prefer to attach PP to VP – though NP attachment is higher 
frequency in corpora. 

• Theta attachment: prefer maximal theta-grid – not the most likely 

• Evidence the people consider globally non-syntactic analyses 

• The coach smiled at the player tossed the frisbee. 

• Difficultly for grammatical & unambiguous – but memory intensive – structures.
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arg max i P(si)  for all si∈S



Problem: Subcategorisation likelihood
• NP/S Complement Ambiguity: The athlete realised his goals ... 

                    S                                                                S 
                ru                                                        ru 
         NP            VP                                              NP            VP 
  The athlete    ru                                    The athlete   ru 
                    V            NP                                                V               S 
               realised     his goals                                           realised     tu 
                                                                                                   NP         VP
                                                                                                his goals  were out of reach

• Evidence for object attachment: (Pickering, Traxler & Crocker 2000) 

• Despite S-comp bias of verb, NP is initially attached as direct object 
• Ideal likelihood models (e.g. Jurafsky) predict the opposite

P(realised,<NP>) = 0.20

P(realised,<S>) = 0.66

23

Refining the Rational Analysis
• Cost: Local reanalysis is often easy, long-distance reanalysis is difficult 

• Decision should take this into account 

• Interpretation: Only one (or few) analyses can be ‘foregrounded’ 

• I.e. only one interpretation is actively attended to, and evaluated  

• Solution: Favour ‘interpretable’ dependencies 

• increase probability of locally backing out of a wrong analysis 

• avoid being led down the garden path by pure likelihood
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Rational Analysis of Parsing
• The incremental parsing problem: 

• local ambiguities Li must be resolved as they are encountered 

• success = settling on the globally correct analysis 

• Initially adopting an analysis, which is ultimately correct 

• Backing-out of a wrong analysis, and settling on the correct one 

• Foreground the analysis which can be confidently rejected or confirmed.

€ 

P(global success) = P(success at Li)
i=1

n

∏
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Chater, Crocker & Pickering, Rational Models of Cognition, 1998.

Deriving the optimal function
• Informativity:  f(P,T) 

• P = prior probability 

• likelihood based on our experience 

• T = testability 

• measure of how useful new evidence 

E will be in estimating P(H|E). 

• Maximise the chance of making the correct analysis, soon.

Consider two hypotheses H1 & H2:  
P(Correct1) = P(H1,Pass1) + P(H2,Fail1) 
= P(Pass1|H1)P(H1) + P(Fail1|H2)P(H2) 
= P(H1) + (1-1/S(H1))P(H2) 
P(Correct2) = P(H2) + (1-1/S(H2))P(H1) 

Choose H where P(Correct) is greatest: 
P(Correct1) > P(Correct2) 
P(H1)+(1-1/S(H1))P(H2) > P(H2)+(1-1/S(H2))P(H1)  
… 
S(H1)P(H1)  > S(H2)P(H2) 

So, choose Hi where P(Hi)S(Hi) is maximised

€ 

I(Hi) = P(Hi) ⋅ S(Hi)

S(Hi) =
1

P(Confirm Hi)
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Deriving the optimal function
Consider two hypotheses H1 & H2:  

P(Correct1) = P(H1,Pass1) + P(H2,Fail1) 

= P(Pass1|H1)P(H1) + P(Fail1|H2)P(H2) 

= 1 * P(H1) + (1-P(Pass1))P(H2) 

= P(H1) + (1-1/S(H1))P(H2) 

P(Correct2) = P(H2) + (1-1/S(H2))P(H1)
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Likelihood of success if we initially 
adopt H1: is the sum of P for H1 

being true and confirmed, and P for 
H2 being true and H1 disconfirmed

€ 

I(Hi) = P(Hi) ⋅ S(Hi)

S(Hi) =
1

P(Confirm Hi)

Chater, Crocker & Pickering, Rational Models of Cognition, 1998.

NP/S Revisited

• Using S-bias verbs (corpus & completion). 

• Eye-tracking study revealed: 

• Increased RTs in coloured region 

• Consistent with initial object attachment 

• Confirms the prediction of the 
Informativity Model 

• Falsifies the analysis based purely on  
Maximum Likelihood.
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A. The athlete realised his goals were out of reach 
B. The athlete realised his shoes were out of reach
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Summary of Informativity
• Optimal function incorporates aspects of earlier models: 

• Basic cognitive limitations: serial interpretation + reanalysis 

• Maximising success of reaching correct interpretation 

• Explains why people don’t always follow likelihood alone 

• Prefer to form interpretable dependencies 

• These can be evaluated as plausible, or trigger reanalysis quickly 

• Informativity is an idealisation of what the HSPM should approximate
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Rational Models
• Motivation: People process language: rapidly, robustly, and accurately 

• Experimental evidence for probabilistic mechanisms 

• Maximise Likelihood: 

• SLCM: Simple, robust account of lexical category disambiguation 

• Jurafsky: Probabilistic parser that models a range of local ambiguities 

• Crocker & Brants: High accuracy and fast performance with beam search 

• In common: all models approximate a maximum likelihood function 

• Differences: the underlying symbolic model (n-gram, cfg), and what units of structure are 
associated with statistical parameters. 

• Informativity: Motivates a optimal function that combines Probability(S) with Specificity(S), where the 
latter is not unlike Pritchett’s Theta-Attachment strategy, since role-receiving constituents are typically 
more constrained.

€ 

argmax
i

P(si) for all si ∈ S
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Open Problems
• Integrating plausible parsing mechanisms: 

• Either bounded parallel, or serial (momentary parallel) with reanalysis 

• Better metrics for linking parser behavior with human processing 
complexity 

• Implementing and evaluating more plausible “optimal functions”: 

• More linguistically informed probabilistic models (lexical, semantic ...) 

• Integration with non-probabilistic decision strategies (recency) 

• More sophisticated integration of memory load constraints
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