Computational Psycholinguistics

Lecture 7: **Probabilistic Parsing**

Matthew W. Crocker
crocker@coli.uni-sb.de

- **Goal:** Optimize accurate incremental interpretation
- **Function:** Adopt the most likely interpretation:
 \[
 \arg\max_i P(s_i) \text{ for all } s_i \in S
 \]
- **Realization:** Likelihood \approx Experience \approx Corpora

 Mechanisms: PCFGs, SRNs ...

- **Empirical:** lexical access, word category/sense, subcategorization
- **Rational:** accurate, robust, broad coverage
- **Rational Models:**
 - explain accurate performance in general: i.e. rational behaviour
 - explain specific observed human behavior: e.g. for specific phenomena
Lexical Category Disambiguation

- Sentence processing involves the resolution of lexical, syntactic, and semantic ambiguity.
 - Solution 1: These are not distinct problems
 - Solution 2: Modularity, divide and conquer
- Category ambiguity:
 - *Time flies like an arrow.*
- Extent of ambiguity:
 - 10.9% (types) 65.8% (tokens) (Brown Corpus)

The Model: A Simple POS Tagger

- Find the best category path \((t_1 \ldots t_n)\) for an input sequence of words \((w_1 \ldots w_n)\): \(P(t_0, \ldots t_n, w_0, \ldots w_n)\)
- Initially preferred category depends on two parameters:
 - Lexical bias: \(P(w_i|t_i)\)
 - Category context: \(P(t_i|t_{i-1})\)
- Categories are assigned incrementally: Best path may require revision
SLCM Summary

- High accuracy in general & psychologically plausible
- Explains where people have difficulty
 - Statistical: category frequency **drives** initial category decisions
 - Modular: syntax structure **doesn’t determine** initial category decisions
 - Bigram evidence: “that” ambiguity [Juliano and Tanenhaus]
 - Reanalysis of verb transitivity for ‘reduced relatives’ [MacDonald]
 - Explains “local coherence” effects:
 “The coach smiled at the player *tossed* the frisbee …”

Estimating P: The Grain Problem

- Suppose you have been exposed to N sentences in your lifetime
 \[
 \arg\max_i P(s_i) \text{ for all } s_i \in S
 \]
 “Our company is training workers”
- Problem: P=0, often
- Solution: Estimate P, by combining probabilities of smaller chunks

\[
P(S=s1)=C(s1)/N \\
P(S=s2)=C(s2)/N \\
P(S=s3)=C(s3)/N
\]
PCFGs: a quick reminder

• Context-free rules annotated with probabilities

• Probabilities of all rules with the same LHS sum to one;

• Probability of a parse is the product of the probabilities of all rules applied.

• Example (Manning and Schütze 1999)

\[
\begin{align*}
S & \rightarrow \text{NP } \text{VP} & 1.0 \\
\text{PP} & \rightarrow \text{P NP} & 1.0 \\
\text{VP} & \rightarrow \text{VP NP} & 0.7 \\
\text{VP} & \rightarrow \text{VP PP} & 0.3 \\
\text{P} & \rightarrow \text{with} & 1.0 \\
\text{V} & \rightarrow \text{saw} & 1.0 \\
\text{NP} & \rightarrow \text{astronomers} & 0.1 \\
\text{NP} & \rightarrow \text{ears} & 0.18 \\
\text{NP} & \rightarrow \text{saw} & 0.04 \\
\text{NP} & \rightarrow \text{stars} & 0.18 \\
\text{NP} & \rightarrow \text{telescopes} & 0.1
\end{align*}
\]

Parse Ranking

\[P(t_1) = 1.0 \times 0.1 \times 0.7 \times 1.0 \times 0.4 \times 0.18 \times 1.0 \times 1.0 \times 0.18 = 0.0009072\]
Recall the Grain Problem

Note: PCFG-derived probabilities will be the same for both structures. Would need richer statistics to capture!

\[P(t_1) = 1.0 \times 0.1 \times 0.3 \times 0.7 \times 1.0 \times 0.18 \times 1.0 \times 1.0 \times 0.18 = 0.0006804 \]
Methodological advantages

- Transparently combine symbolic and stochastic mechanisms
 - Associate probabilities with rules and representation
- Scaleable, predictive models
 - Supervised training is well understood
 - Independent empirical basis for establishing the parameters
- Blurring the boundary between rational and empirical
 - Combines existing theories with mechanisms that learn from experience
 - Do probabilities encode “hidden” knowledge/representations?

Jurafsky (1996)

- Psycholinguistic model of lexical and syntactic access and disambiguation
- Exploits concepts from statistical parsing
 - Probabilistic CFGs
 - Bayesian modeling frame probabilities
- Architecture: Probabilistic, bounded, parallel parser
 - Parses are “pruned” (removed from memory) if they fall outside the “beam”
 - E.g. if they are too improbable with respect to the best parse
 - Pruned parses are predicted to reflect garden-path sentences
Frame Preferences

• “The women discussed the dogs on the beach.”

• t1. The women discussed them (the dogs) while on the beach. (10%)

• t2. The women discussed the dogs which were on the beach. (90%)

\[p(\text{discuss}, \langle \text{NP PP} \rangle) = 0.24 \]
\[VP \rightarrow V \text{ NP XP} \quad 0.15 \]
\[t_1: \]
\[\begin{array}{c}
 \text{VP} \\
 \text{V} \\
 \text{NP} \\
 \text{PP} \\
 \end{array} \]
\[\begin{array}{c}
 \text{discuss} \\
 \text{the dogs} \\
 \text{on the beach} \\
 \end{array} \]
\[p(t_1) = 0.15 \times 0.24 = 0.036 \text{ (dispreferred)} \]

\[p(\text{discuss}, \langle \text{NP} \rangle) = 0.76 \]
\[VP \rightarrow V \text{ NP} \quad 0.39 \]
\[NP \rightarrow \text{NP XP} \quad 0.14 \]
\[t_2: \]
\[\begin{array}{c}
 \text{VP} \\
 \text{V} \\
 \text{NP} \\
 \text{PP} \\
 \end{array} \]
\[\begin{array}{c}
 \text{discuss} \\
 \text{the dogs} \\
 \text{on the beach} \\
 \end{array} \]
\[p(t_2) = 0.76 \times 0.39 \times 0.14 = 0.041 \text{ (preferred)} \]

Frame Preferences

• The women kept the dogs on the beach.

• t2. The women kept the dogs which were on the beach. (10%)

• t1. The women kept them (the dogs) on the beach. (90%)

\[p(\text{keep}, \langle \text{NP XP[pred +]} \rangle) = 0.81 \]
\[VP \rightarrow V \text{ NP XP} \quad 0.15 \]
\[t_1: \]
\[\begin{array}{c}
 \text{VP} \\
 \text{V} \\
 \text{NP} \\
 \text{PP} \\
 \end{array} \]
\[\begin{array}{c}
 \text{keep} \\
 \text{the dogs} \\
 \text{on the beach} \\
 \end{array} \]
\[p(t_1) = 0.15 \times 0.81 = 0.12 \text{ (preferred)} \]

\[p(\text{keep}, \langle \text{NP} \rangle) = 0.19 \]
\[VP \rightarrow V \text{ NP} \quad 0.39 \]
\[NP \rightarrow \text{NP XP} \quad 0.14 \]
\[t_2: \]
\[\begin{array}{c}
 \text{VP} \\
 \text{V} \\
 \text{NP} \\
 \text{PP} \\
 \end{array} \]
\[\begin{array}{c}
 \text{keep} \\
 \text{the dogs} \\
 \text{on the beach} \\
 \end{array} \]
\[p(t_2) = 0.19 \times 0.39 \times 0.14 = 0.01 \text{ (dispreferred)} \]
Construction Preferences

\[S \rightarrow NP \ldots \quad 0.92 \]
\[NP \rightarrow \text{Det Adj N} \quad 0.28 \]
\[N \rightarrow \text{ROOT s} \quad 0.23 \]
\[N \rightarrow \text{house} \quad 0.0024 \]
\[\text{Adj} \rightarrow \text{complex} \quad 0.00086 \]

\(t_1: \)

\[p(t_1) = 1.2 \times 10^{-7} \text{ (preferred)} \]

\[S \rightarrow \text{Det N} \quad 0.63 \]
\[S \rightarrow [NP \ V P \ldots] \quad 0.48 \]
\[N \rightarrow \text{complex} \quad 0.000029 \]
\[V \rightarrow \text{house} \quad 0.0006 \]
\[V \rightarrow \text{ROOT s} \quad 0.086 \]

\(t_1: \)

\[p(t_1) = 4.5 \times 10^{-10} \text{ (dispreferred)} \]

Construction Preferences

\[S \rightarrow NP \ldots \quad 0.92 \]
\[NP \rightarrow \text{Det N N} \quad 0.28 \]
\[N \rightarrow \text{fire} \quad 0.00072 \]
\[N \rightarrow \text{ROOT s} \quad 0.23 \]

\(t_1: \)

\[p(t_1) = 4.2 \times 10^{-5} \text{ (preferred)} \]

\[S \rightarrow \text{Det N} \quad 0.63 \]
\[S \rightarrow [NP \ V P \ldots] \quad 0.48 \]
\[V \rightarrow \text{fire} \quad 0.00042 \]
\[V \rightarrow \text{ROOT s} \quad 0.086 \]

\(t_1: \)

\[p(t_1) = 1.1 \times 10^{-5} \text{ (dispreferred)} \]
Frames and Constructions

“The horse raced past the barn fell.”

\[p(\text{race}, \langle \text{NP} \rangle) = 0.92 \]

\[p(\text{race}, \langle \text{NP NP} \rangle) = 0.08 \]

\[\text{NP} \rightarrow \text{NP XP} \quad 0.14 \]

\[p(t_1) = 0.92 \text{ (preferred)} \]

\[p(t_1) = 0.0112 \text{ (dispreferred)} \]

Frame and Construction Probs

“The bird found died”

\[p(\text{find}, \langle \text{NP} \rangle) = 0.38 \]

\[p(\text{find}, \langle \text{NP NP} \rangle) = 0.62 \]

\[\text{NP} \rightarrow \text{NP XP} \quad 0.14 \]

\[p(t_1) = 0.38 \text{ (preferred)} \]

\[p(t_1) = 0.0868 \text{ (dispreferred)} \]
Setting Beam Width

- **Assumption**: if the relative probability of a parse with respect to the best parse drops below a certain threshold, it will be pruned

<table>
<thead>
<tr>
<th>sentence</th>
<th>probability ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>the complex houses ...</td>
<td>267:1</td>
</tr>
<tr>
<td>the horse raced ...</td>
<td>82:1</td>
</tr>
<tr>
<td>the warehouse fires ...</td>
<td>3.8:1</td>
</tr>
<tr>
<td>the bird found ...</td>
<td>3.7:1</td>
</tr>
</tbody>
</table>

- **Claim**: a tree is pruned, and therefore a garden-path, if the probability ration is greater than 5:1

Open Issues

- Incrementality: Can we make more fine grained predictions about the time course of ambiguity resolution:
 - What about when category preferences go against syntactic possibilities

- Relative difficulty: Jurafsky doesn't distinguish the relative difficulty of parses/interpretations that remain in the beam

- Memory: No account for memory load within a sentence (e.g. centre embeddings), as there is no ambiguity
 - Gibson (1992) used a similar “beam” approach with a memory load heuristic

- Does the model make the right predictions when scaled up?
Psychological Plausibility

- Are wide-coverage, probabilistic models cognitively plausible?

- Broad coverage probabilistic parsers:
 - High accuracy: 86% precision/recall
 - Robust: Analyse all and ill-formed input
 - But: Non-incremental & massively parallel

- What is the general performance of probabilistic parser that:
 - Has restricted memory resources
 - Strictly incremental parsing (and pruning)

Design of the Experiment

- Adapted a standard Stochastic Context Free Grammar:
 - Incremental Processing: full processing on each word, no lookahead
 - Immediate pruning: reduces memory requirements
 - Pruning: active/inactive/both
 - Variable Beam: edges close to best are kept (like Jurafsky)
 - Fixed Beam: fixed number of best edges are kept
 - Training: Wall street journal sections 2-21
 - Testing: From section 22 (1578 sentences of length 40 or less)
Results for Incremental SCFG

- Baseline performance:
 - Recall: 68.82%
 - Precision: 73.77%
 - Chart size: 141,650
 - Avg # of analysis per span: 18.7
 - Speed: 1.8 Tokens/Sec
 - F-Score: 71.21

- Restricted model:
 - Recall: 68.82%
 - Precision: 73.66%
 - Chart size: 1.15%
 - Avg # of analysis per span: 2
 - Speed: 301 Tokens/Sec
 - Fixed beam (inactive: 2 active: 4)
 - F-Score: 71.16

Interim Summary

- Wide coverage grammar, good overall performance
- Accounts for specific lexical/syntactic local ambiguities
- Sacrifices linguistic fidelity/richness
 - Psychological Plausibility: Incrementality & Restricted Memory
- No degradation in accuracy
- Memory: 100 x less
- Speed: 100 x faster
Summary of Jurafsky

• Probabilistic grammars offer rational account of lexical and syntactic disambiguation in parsing

• Can be easily scaled, and also restricted to meet considerations of cognitive plausibility

• Jurafsky's model, however, does not explain behaviour (i.e. reading times) beyond POS tag models (but does yield a syntactic analysis).

• Also, coarse-grained linking hypothesis to processing difficulty.