Rational Analysis

- “An algorithm is likely understood more readily by understanding the nature of the problem being solved than by examining the mechanism (and the hardware) in which it is solved.” (Marr, p27)

- Principle of Rationality: The cognitive system optimizes the adaptation of the behavior of the organism.

- If a cognitive processes is viewed as rational, then the computational theory should reflect optimal adaptation to the task & environment:

 1. Derive the Optimal Function
 2. Test against the empirical data
 3. Revise the Optimal Function
arg\max_i P(s_i) \text{ for all } s_i \in S

- Empirical: lexical access, word category/sense, subcategorization
- Rational: accurate, robust, broad coverage
- Rational Models:
 - explain accurate performance in general: i.e. rational behaviour
 - explain specific observed human behavior: e.g. for specific phenomena

Lexical Category Disambiguation
- Sentence processing involves the resolution of lexical, syntactic, and semantic ambiguity.
 - Solution 1: These are not distinct problems
 - Solution 2: Modularity, divide and conquer
- Category ambiguity:
 - *Time flies like an arrow.*
- Extent of ambiguity:
 - 10.9\% (types) 65.8\% (tokens) (Brown Corpus)
The Model: A Simple POS Tagger

- Find the best category path \((t_1 \ldots t_n)\) for an input sequence of words \((w_1 \ldots w_n)\):
 \[P(t_0, \ldots t_n, w_0, \ldots w_n) \]

- Initially preferred category depends on two parameters:
 - Lexical bias: \(P(w_i|t_i)\)
 - Category context: \(P(t_i|t_{i-1})\)

- Categories are assigned incrementally: Best path may require revision

2 Predictions

- The Statistical Hypothesis:
 - Lexical word-category frequencies, \(P(w_i|t_i)\), are used for initial category resolution

- The Modularity Hypothesis:
 - Initial category disambiguation is modular, and not determined by (e.g. syntactic) context beyond \(P(t_i|t_{i-1})\).

- Two experiments investigate
 - The use word-category statistics
 - Autonomy from syntactic context
Statistical Lexical Category Disambiguation

- Initially preferred category depends on: \(P(t_0, \ldots, t_n, w_0, \ldots, w_n) \approx \prod_{i=1}^{n} P(w_i | t_i) P(t_i | t_{i-1}) \)

- Categories are assigned incrementally
 - the warehouse *prices* the beer very modestly
 - DET N N/V V!
 - the warehouse *prices* are cheaper than the rest
 - DET N N/V N ...
 - the warehouse *makes* the beer very carefully
 - DET N N/V V
 - the warehouse *makes* are cheaper than the rest
 - DET N N/V N! ...

- Interaction between bias and disambiguation
- Category frequency determines initial decisions

Modular Disambiguation?

- Do initial decisions reflect integrated use of both lexical and syntactic constraints/biases or just (modular) lexical category biases?
- N/V bias with immediate/late syntactic disambiguation as noun

- Main effect of bias at disambiguation:
 - Initial decisions ignore syntactic context.
 - Problematic for lexicalist syntactic theories
 - At c2, VA/VU difference is significant
 - Implies lexical category doesn’t include number (?!)

\[c_1 \quad c_2 \quad d_1 \quad d_2 \]

- V-Ambig
- V-Unamb
- N-Ambig
- N-Unamb

- [V-bias, N-disamb] The warehouse *makes are* cheaper than the rest.
- [V-bias, N-unamb] The warehouse *make is* cheaper than the rest.
- [N-bias, N-disamb] The warehouse *prices are* cheaper than the rest.
- [N-bias, N-unamb] The warehouse *price is* cheaper than the rest.
‘That’ Ambiguity (Juliano & Tanenhaus)

A. *That experienced diplomat(s)* would be very helpful ... [DET]
B. The lawyer insisted *that experienced diplomat(s)* would be very helpful [Comp]

- Initially: det=.35 comp=.11 Post-verbally: comp=.93 det=.06
- Found increased RT when dispreferred (according to context) is forced in the disambiguation region “diplomat(s)”
- Advocates bigram over unigram:

 \[
 \begin{array}{c|cc}
 t_i & \text{Comp} & \text{Det} \\
 \hline
 t_{i-1} = \text{verb} & .0234 & .0051 \\
 t_{i-1} = \text{start} & .0003 & .0111 \\
 \end{array}
 \]

 P(that|comp)= 1, P(that|det)=.171
 P(comp|verb)=.0234, P(det|verb)=.0296
 P(comp|start)=.0003, P(det|start)=.0652

Internal Reanalysis

- The tagger model predicts internal reanalysis for some sequences.
- Viterbi: revise most likely category sequence based on new evidence
- Right context in RR/MV ambiguities: [MacDonald 1994]
 - The sleek greyhound *raced at the track* won the event
 - The sleek greyhound *admired at the track* won the event
- *raced* = intrans bias, *admired* = trans bias
- Increased RT (blue) indicate transitivity bias is used
An SLCM Account

- Assume transitive/intransitive POS categories, extract frequencies from the Susanne corpus:

 The man fought at the police station fainted [intransitive]
 The man held at the police station fainted [transitive]

Predicts garden path for intransitives
Predicts rapid reanalysis for transitives

Reduced Relative Clause

- Parsers can make wrong decisions that lead them up the garden path

“The man raced to the station was innocent”

The Problem

- In some cases is may be possible to recover from the error earlier

“The man held at the station was innocent”

SLCM Summary

- Psychologically plausible: lower statistical complexity than other models
- High accuracy in general: explains why people perform well overall
- Explains where people have difficulty
 - Statistical: category frequency *drives* initial category decisions
 - Modular: syntax structure *doesn’t determine* initial category decisions
 - Bigram evidence: “that” ambiguity [Juliano and Tanenhaus]
 - Reanalysis of verb transitivity for ‘reduced relatives’ [MacDonald]
A Puzzle

Sometimes local thematic assignment appears to violate global parse:

- [A/R] The coach smiled at the player tossed a frisbee by the ...
- [U/R] The coach smiled at the player thrown a frisbee by the ...
- [A/U] The coach smiled at the player who was tossed a frisbee by the ...
- [U/U] The coach smiled at the player who was thrown a frisbee by the ...

We might expect to see:

Main effect of verb ambiguity: if ambiguous verbs are difficult
Main effect of structure ambiguity: if ambiguous RRCs are difficult

A Puzzle

Sometimes local thematic assignment appears to violate global parse:

- [A/R] The coach smiled at the player tossed a frisbee by the ...
- [U/R] The coach smiled at the player thrown a frisbee by the ...
- [A/U] The coach smiled at the player who was tossed a frisbee by the ...
- [U/U] The coach smiled at the player who was thrown a frisbee by the ...

Do people consider the locally coherent, but not globally licensed parse?
This structure shouldn’t even be considered by incremental parsers
Results:

These results are problematic for theories requiring global contextual consistency (e.g. Frazier, 1987; Gibson, 1991, 1998)

An SLCM Account

Initially preferred category depends on two parameters:

- Lexical bias: $P(w_i|t_i)$ Category context: $P(t_i|t_{i-1})$

[AS-AV] The coach smiled at the player tossed a frisbee [slowest]

- $P(\text{tossed}|V\text{past}) * P(\text{Vpast}|\text{noun}) > P(\text{tossed}|V\text{part}) * P(\text{Vpart}|\text{noun})$
- So: assign tossed=Vpast, but can’t integrate into parse, so reanalyse

[US-AV] The coach smiled at the player who was tossed a frisbee [fast]

- $P(\text{tossed}|V\text{past}) * P(\text{Vpast}|\text{Aux}) < P(\text{tossed}|V\text{part}) * P(\text{Vpart}|\text{Aux})$
- So: assign tossed=Vpart, integrate into parse, no difficulty
Comments on the SLCM

- Evidence category preference appears truly frequency-based
- Indication of which features are exploited [e.g. transitivity, not number]
 - But this is subject to further empirical investigation & verification
- Combines optimality of probabilities with advantages of modularity
 - Psychological plausibility due to tractable parameter space
- Implications for the **Grain Problem**?
 - Bigrams used, but not tri-grams, or syntactic structure?
 - Transitivity but not number? More/less syntactically-rich POS tags?

Probabilistic Syntax

- The SLCM is only a model of lexical category assignment
 - But note: these category decisions underlie many “syntactic” ambiguities
- Some ambiguities are purely syntactic, however:
 - Relative clause attachment, or other modifier attachment
 - NP/S complement ambiguity (unless subcat is encoded in the POS tags)
- Also evidence that compositional interpretation influences parsing
 - Can’t be modeled in the SLCM alone
- Apply probabilistic approaches to modeling human syntactic parsing
Probabilistic Language Processing

- Task of comprehension: recover the correct interpretation
- Goal: Determine the most likely analysis for a given input:
 \[\arg\max_i P(s_i) \text{ for all } s_i \in S \]
- \(P \) hides a multitude of sins:
 - \(P \) corresponds to the degree of belief in a particular interpretation
 - Influenced by recent utterances, experience, non-linguistic context
- \(P \) is usually determined by frequencies in corpora or completions
- To compare probabilities (of the \(S_i \)), we assume parallelism. How much?

Estimating \(P \): The Grain Problem

- Suppose you have been exposed to \(N \) sentences in your lifetime
- “Our company is training workers”
- Problem: \(P=0 \), often
- Solution: Estimate \(P \), by combining probabilities of smaller chunks

\[
P(S=s1) = \frac{C(s1)}{N} \\
P(S=s2) = \frac{C(s2)}{N} \\
P(S=s3) = \frac{C(s3)}{N}
\]
PCFGs: a quick reminder

- Context-free rules annotated with probabilities
- Probabilities of all rules with the same LHS sum to one;
- Probability of a parse is the product of the probabilities of all rules applied.

Example (Manning and Schütze 1999)

\[
\begin{array}{llll}
S & \rightarrow & NP & VP & 1.0 \\
PP & \rightarrow & P & NP & 1.0 \\
VP & \rightarrow & VP & NP & 0.7 \\
VP & \rightarrow & VP & PP & 0.3 \\
P & \rightarrow & with & 1.0 \\
V & \rightarrow & saw & 1.0 \\
\end{array}
\]

\[
\begin{array}{llll}
NP & \rightarrow & NP & PP & 0.4 \\
NP & \rightarrow & astronomers & 0.1 \\
NP & \rightarrow & ears & 0.18 \\
NP & \rightarrow & saw & 0.04 \\
NP & \rightarrow & stars & 0.18 \\
NP & \rightarrow & telescopes & 0.1 \\
\end{array}
\]

Parse Ranking

\[
P(t_1) = 1.0 \times 0.1 \times 0.7 \times 1.0 \times 0.4 \times 0.18 \times 1.0 \times 1.0 \times 0.18 = 0.0009072
\]
Parse Ranking

\[t_2: \]
\[
S_{1.0} \quad \frac{P(t)}{P(t_1)} = 1.0 \times 0.1 \times \frac{1.0}{1.0} \times \frac{0.18}{0.18} = 0.0006804
The Grain Problem

• Experience-based models rely on frequency of prior linguistic exposure to determine preferences. What kinds of things do we count?

 • Complete sentence/structure occurrences? Data too sparse.

 • Lexical: Verb subcategorization frequencies. Should we distinguish tenses? Senses?

 • Word level: specific word forms or lemmas? Part-of-speech, how detailed?

 • Tuning is structural: \(\text{NP P NP RC} \) vs \(\text{NP P NP RC} \)

 High Low

• Does all experience have equal weight (old vs. new)?

• Are more frequent “words” or “strings” (idioms) dealt with using finer grain statistics than rarer expressions?