Experience vs Rules

- The previous accounts adopt purely syntactic mechanisms for disambiguation

- Assume a modular parser & the “primacy” of syntax

- Initial parsing decisions are guided by syntax & subcategorization alone

- Does our prior experience with language, determine our preferences for interpreting the sentences we hear?

 - Tuning hypothesis: disambiguate structure based on how it has been most frequently disambiguated in the past.

- To what extent do non-syntactic constraints such as semantics, intonation, and context influence our resolution of ambiguity?
Multiple constraints

“The doctor told the woman that ...

\[
\text{story}
\]
\[
\text{diet was unhealthy}
\]
\[
\text{he was in love with her husband}
\]
\[
\text{he was in love with to leave}
\]
\[
\text{story was about to leave}
\]

Prosody: intonation can assist disambiguation

Lexical preference: that = \{Comp, Det, RelPro\}

Subcat: told = \{ _ NP NP\} _ NP S\} _ NP S’\} _ NP Inf\}

Semantics: Referential context, plausibility

- Reference may determine “argument attach” over “modifier attach”
- Plausibility of story versus diet as indirect object

The Role of Experience

- Resolve ambiguities according to linguistic experience, early proposals:
 - Lexical Guidance Hypothesis: (Ford et al, 1982)
 - Resolve subcategorisation ambiguities using the most likely frame for the verb
 - Linguistic Tuning Hypothesis: (Cuetos et al, 1988; 1996)
 - Resolve structural ambiguities according to the structure which has previously prevailed
 - Relative clause attachment
 - “Someone shot the servant of the actress who was on the balcony”
Relative Clause Attachment

Cross-linguistic RC Preferences

<table>
<thead>
<tr>
<th>Language</th>
<th>Off-line</th>
<th>On-line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>French</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Italian</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Dutch</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>high</td>
<td>low(early), high(late)</td>
</tr>
<tr>
<td>English</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Arabic</td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>Norwegian</td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>Swedish</td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>Romanian</td>
<td>low</td>
<td></td>
</tr>
</tbody>
</table>

- Immediate low attachment, possibly revised quickly (even on-line) … seems the best account
Probabilistic Models of Language

• Statistics in linguistics [Abney, 1996]
 • Acquisition, change, and variation
 • Ambiguity and graded acceptability
 • Brings 'performance' back into linguistics
• Statistics in computational linguistics
 • Effective: accurate and robust
 • Eschews 'AI' problem
 • Trainable & efficient

Probabilistic Psycholinguistics

• Probabilistic models of sentence processing
 • Symbolic parsing models + probabilities (statistical)
 • Interactive, constraint-based accounts (connectionist)

• Probabilistic Models: Breadth and Depth
 • SLCM: Maximal likelihood for category disambiguation (Corley & Crocker)
 • Statistical models of human parsing (Jurafsky, Crocker & Brants)
 • Criticisms of likelihood & Information Theoretic Accounts (Hale, Levy, Demberg)
Rational Analysis

• “An algorithm is likely understood more readily by understanding the nature of the problem being solved than by examining the mechanism (and the hardware) in which it is solved.” (Marr, p27)

• **Principle of Rationality:** The cognitive system optimizes the adaptation of the behavior of the organism.

• If a cognitive processes is viewed as rational, then the computational theory should reflect optimal adaptation to the task & environment:
 1. Derive the Optimal Function
 2. Test against the empirical data
 3. Revise the Optimal Function

Garden Path vs. Garden Variety

• Human Language Processing: **Garden Paths**
 - ✗ Incremental disambiguation process can fail
 - ✗ Memory limitations lead to breakdown
 - ✗ Garden paths lead to misinterpretations, complexity or breakdown

• Human Language Processing: **Garden Variety**
 - ✔ Accurate: typically recover the correct interpretation
 - ✔ Robust: are able to interpret ungrammatical & noisy input
 - ✔ Fast: people process utterances in real-time, incrementally

Can we treat language as a rational cognitive system?
Marr’s Levels of Modeling

- Theories/models can characterize processing at differing levels of abstraction.

- Marr (1982) identifies three such levels:
 - *Computational* level: a statement of what is computed.
 - *Algorithmic* level: specifies how computation takes place.
 - *Implementational* level: is concerned with how algorithms are actually neurally instantiated in the brain.

- There may be many algorithms for a given computational theory.

- Many neural implementations could implement a given algorithm.

Relating Models with Data

Diagram showing the relationships between Computational, Algorithmic, and Implementational levels with empirical data and resource limitations.
Towards a Rational Analysis

- **Hypothesis:** In general people seem well-adapted for language.

- **Goal:** Our models must account for, and explain:
 - Processing difficulty in specific circumstances
 - Effective performance in general

- **Method:** Apply Rational Analysis

- Use probabilistic frameworks to reason about rational behaviour

- Initial hypothesis: The optimal function is one which maximizes the likelihood of obtaining the correct interpretation of an utterance

\[
\text{arg max } P(s_i) \text{ for all } s_i \in S
\]

- Empirical: lexical access, word category/sense, subcategorization

- Rational: accurate, robust, broad coverage

- Rational Models:
 - explain accurate performance in general: i.e. rational behaviour
 - explain specific observed human behavior: e.g. for specific phenomena
Motivating the Probabilistic HSPM

• Empirical: Evidence for the use of frequencies
 • Sense disambiguation [Duffy, Morris & Rayner]
 • Category disambiguation [Corley & Crocker]
 • Subcategorization frame selection [Trueswell et al., Garnsey]
 • Structural preferences [Mitchell et al]

• Rational: Near optimal heuristic behaviour
 • Select the “most likely” analysis
 • Ideal for modular architectures, where full knowledge isn’t available

Probabilistic Language Processing

• Task of comprehension: recover the correct interpretation

• Goal: Determine the most likely analysis for a given input:

\[\arg\max_i P(s_i) \text{ for all } s_i \in S \]

• \(P \) hides a multitude of sins:
 • \(P \) corresponds to the degree of belief in a particular interpretation
 • Influenced by recent utterances, experience, non-linguistic context
 • \(P \) is usually determined by frequencies in corpora or completions
 • To compare probabilities (of the \(S_i \)), we assume parallelism. How much?
Implementation

- Interpretation of probabilities
 - Likelihood of structure occurring, \(P \) can be determined by frequencies in corpora or human completions

- Estimation of probabilities
 - Infinite structural possibilities = sparse data
 - Associate probabilities with grammar (finite): e.g. PCFGs

- What mechanisms are required:
 - Incremental structure building and estimation of probabilities
 - Comparison of probabilities entails parallelism

Lexical Category Disambiguation

- Sentence processing involves the resolution of lexical, syntactic, and semantic ambiguity.
 - Solution 1: These are not distinct problems
 - Solution 2: Modularity, divide and conquer

- Category ambiguity:
 - *Time flies like an arrow.*

- Extent of ambiguity:
 - 10.9% (types) 65.8% (tokens) (Brown Corpus)
The Model: A Simple POS Tagger

- Find the best category path \((t_1 \ldots t_n)\) for an input sequence of words \((w_1 \ldots w_n)\):
 \[P(t_0,\ldots,t_n, w_0,\ldots,w_n) \]

- Initially preferred category depends on two parameters:
 - Lexical bias: \(P(w_i|t_i)\)
 - Category context: \(P(t_i|t_{i-1})\)

- Categories are assigned incrementally: Best path may require revision