Experience vs Rules

- The previous accounts adopt purely syntactic mechanisms for disambiguation
 - Assume a serial modular parser & the “primacy” of syntax
 - Initial parsing decisions are guided by syntax/theta-roles alone
- To what extent do non-syntactic constraints such as semantics, intonation, and context influence our resolution of ambiguity?
- Are syntactic and non-syntactic constraints probabilistic?
- Does our prior experience with language, determine our preferences for interpreting the sentences we hear?
Multiple constraints

“The doctor told the woman that …

story
diet was unhealthy
he was in love with her husband
he was in love with to leave
story was about to leave

Prosody: intonation can assist disambiguation

Lexical preference: \(\textit{that} = \{ \textit{Comp}, \textit{Det}, \textit{RelPro} \} \)

Subcat: \(\textit{told} = \{ [_NP \ NP] [_NP \ S] [_NP \ S'] [_NP \ Inf] \} \)

Semantics: Referential context, plausibility

- Reference may determine “argument attach” over “modifier attach”
- Plausibility of \(\textit{story} \) versus \(\textit{diet} \) as indirect object

The Role of Experience

- Resolve ambiguities according to linguistic experience, early proposals:

 - \textbf{Lexical Guidance Hypothesis}: (Ford et al, 1982)
 - Resolve subcategorisation ambiguities using the most likely frame for the verb

 - \textbf{Linguistic Tuning Hypothesis}: (Cuetos et al, 1988; 1996)
 - Resolve structural ambiguities according to the structure which has previously prevailed

- Relative clause attachment

 - “Someone shot the servant of the actress who was on the balcony”
Relative Clause Attachment

Cross-linguistic RC Preferences

<table>
<thead>
<tr>
<th>Language</th>
<th>Off-line</th>
<th>On-line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>French</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Italian</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Dutch</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>high</td>
<td>low(early), high(late)</td>
</tr>
<tr>
<td>English</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Arabic</td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>Norwegian</td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>Swedish</td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>Romanian</td>
<td>low</td>
<td></td>
</tr>
</tbody>
</table>

- Immediate low attachment, possibly revised quickly (even on-line) … seems the best account
Probabilistic Models of Language

- Statistics in linguistics [Abney, 1996]
 - Acquisition, change, and variation
 - Ambiguity and graded acceptability
 - Brings ‘performance’ back into linguistics
- Statistics in computational linguistics
 - Effective: accurate and robust
 - Eschews ‘AI’ problem
 - Trainable & efficient

Probabilistic Psycholinguistics

- Probabilistic models of sentence processing
 - Symbolic parsing models + probabilities (statistical)
 - Interactive, constraint-based accounts (connectionist)
- Probabilistic Models: Breadth and Depth
 - SLCM: Maximal likelihood for category disambiguation (Corley & Crocker)
 - Statistical models of human parsing (Jurafsky, Crocker & Brants)
 - Criticisms of likelihood & Information Theoretic Accounts (Hale, Levy, Demberg)
Rational Analysis

• “An algorithm is likely understood more readily by understanding the nature of the problem being solved than by examining the mechanism (and the hardware) in which it is solved.” (Marr, p27)

• Principle of Rationality: The cognitive system optimizes the adaptation of the behavior of the organism.

• If a cognitive processes is viewed as rational, then the computational theory should reflect optimal adaptation to the task & environment:
 1. Derive the Optimal Function
 2. Test against the empirical data
 3. Revise the Optimal Function

Garden Path vs. Garden Variety

• Human Language Processing: Garden Paths
 ✗ Incremental disambiguation process can fail
 ✗ Memory limitations lead to breakdown
 ✗ Garden paths lead to misinterpretations, complexity or breakdown

• Human Language Processing: Garden Variety
 ✔ Accurate: typically recover the correct interpretation
 ✔ Robust: are able to interpret ungrammatical & noisy input
 ✔ Fast: people process utterances in real-time, incrementally
Marr’s Levels of Modeling

• Theories/models can characterize processing at differing levels of abstraction

• Marr (1982) identifies three such levels:
 • *Computational* level: a statement of what is computed
 • *Algorithmic* level: specifies how computation takes place
 • *Implementational* level: is concerned with how algorithms are actually neurally instantiated in the brain

• The may be many algorithms for a given computational theory

• Many neural implementations could implement a given algorithm

Relating Models with Data
Towards a Rational Analysis

• **Hypothesis:** In general people seem well-adapted for language.

• **Goal:** Our models must account for, and explain:

 • Processing difficulty in specific circumstances

 • Effective performance in general

• **Method:** Apply **Rational Analysis**

• Use probabilistic frameworks to reason about rational behaviour

• Initial hypothesis: The optimal function is one which maximizes the likelihood of obtaining the correct interpretation of an utterance

\[
\text{arg max}_i P(s_i) \text{ for all } s_i \in S
\]

• Empirical: lexical access, word category/sense, subcategorization

• Rational: accurate, robust, broad coverage

• Rational Models:

 • explain accurate performance in general: i.e. rational behaviour

 • explain specific observed human behavior: e.g. for specific phenomena

Motivating the Probabilistic HSPM

- Empirical: Evidence for the use of frequencies
 - Sense disambiguation [Duffy, Morris & Rayner]
 - Category disambiguation [Corley & Crocker]
 - Subcategorization frame selection [Trueswell et al., Garnsey]
 - Structural preferences [Mitchell et al]

- Rational: Near optimal heuristic behaviour
 - Select the “most likely” analysis
 - Ideal for modular architectures, where full knowledge isn't available

The Grain Problem

- Experience-based models rely on frequency of prior linguistic exposure to determine preferences. What kinds of things do we count?
 - Actual sentence/structure occurrences? Data too sparse?
 - Lexical: Verb subcategorization frequencies. Do we distinguish tenses? Senses?
 - Word level: specific word forms or lemmas? Part-of-speech, how detailed?
 - Tuning is structural: \(\text{NP P NP RC} \text{ vs } \text{NP P NP RC}\)
 - (Low) \(\text{NP P NP RC}\) (High) \(\text{NP P NP RC}\)
 - Does all experience have equal weight (old vs. new)?
 - Are more frequent “words” or “collocations” (idioms) dealt with using finer grain statistics than rarer expressions?
Relative Clause Attachment

\[S \quad NP \quad V \quad VP \quad NP \quad VP \quad S \]

\[Someone \quad shot \quad the \quad servant \quad of \quad the \quad actress \quad who \quad was \quad on \quad the \quad balcony \]

Alguien disparo contra el criado de la actriz que estaba en el balcón

Probabilistic Language Processing

- Task of comprehension: recover the correct interpretation
- Goal: Determine the most likely analysis for a given input:

\[\text{argmax}_i P(s_i) \text{ for all } s_i \in S \]
- \(P \) hides a multitude of sins:
 - \(P \) corresponds to the degree of belief in a particular interpretation
 - Influenced by recent utterances, experience, non-linguistic context
- \(P \) is usually determined by frequencies in corpora or human completions
- To compare probabilities (of the \(S_i \)), we assume parallelism. How much?
Implementation

• Interpretation of probabilities

 • Likelihood of structure occurring, \(P \) can be determined by frequencies in corpora or human completions

• Estimation of probabilities

 • Infinite structural possibilities = sparse data

 • Associate probabilities with finite description of language: e.g. PCFGs

• What mechanisms are required:

 • Incremental structure building and estimation of probabilities

 • Comparison of probabilities entails parallelism

Lexical Category Disambiguation

• Sentence processing involves the resolution of lexical, syntactic, and semantic ambiguity.

 • Solution 1: These are not distinct problems

 • Solution 2: Modularity, divide and conquer

• Category ambiguity:

 • \textit{Time flies like an arrow.}

• Extent of ambiguity:

 • 10.9\% (types) 65.8\% (tokens) (Brown Corpus)
The Model: A Simple POS Tagger

- Find the best category path \((t_1 \ldots t_n) \) for an input sequence of words \((w_1 \ldots w_n) \):
 \[
P(t_0, \ldots t_n, w_0, \ldots w_n)
 \]

- Initially preferred category depends on two parameters:
 - Lexical bias: \(P(w_i | t_i) \)
 - Category context: \(P(t_i | t_{i-1}) \)

- Categories are assigned incrementally: Best path may require revision

2 Predictions

- The Statistical Hypothesis:
 - Lexical word-category frequencies, \(P(w_i | t_i) \), are used for initial category resolution

- The Modularity Hypothesis:
 - Initial category disambiguation is modular, and not determined by (e.g. syntactic) context beyond \(P(t_i | t_{i-1}) \).

- Two experiments investigate
 - The use word-category statistics
 - Autonomy from syntactic context
Statistical Lexical Category Disambiguation

- Initially preferred category depends on: \(P(t_0, \ldots t_n, w_0, \ldots w_n) \approx \prod_{i=1}^{n} P(w_i | t_i) P(t_i | t_{i-1}) \)

- Categories are assigned incrementally
 - the warehouse \textit{prices} the beer very modestly
 - DET N N/V VI
 - the warehouse \textit{prices} are cheaper than the rest
 - DET N N/V N ...
 - the warehouse \textit{makes} the beer very carefully
 - DET N N/V V
 - the warehouse \textit{makes} are cheaper than the rest
 - DET N N/V N!

- Interaction between bias and disambiguation
- Category frequency determines initial decisions

Modular Disambiguation?

- Do initial decisions reflect integrated use of both lexical and syntactic constraints/biases or just (modular) lexical category biases?
 - N/V bias with immediate/late syntactic disambiguation as noun

- Main effect of bias at disambiguation:
 - Initial decisions ignore syntactic context.
 - Problematic for lexicalist syntactic theories
 - At c2, VA/VU difference is significant
 - Implies lexical category doesn’t include number (?!)

a) [V-bias, N-disamb] The warehouse \textit{makes are} cheaper than the rest.
b) [V-bias, N-unamb] The warehouse \textit{make is} cheaper than the rest.
c) [N-bias, N-disamb] The warehouse \textit{prices are} cheaper than the rest.
d) [N-bias, N-unamb] The warehouse \textit{price is} cheaper than the rest.