Experience vs Rules

- The previous accounts adopt purely syntactic mechanisms for disambiguation.
- Assume a modular parser & the “primacy” of syntax.
- Initial parsing decisions are guided by syntax & subcategorization alone.
- To what extent do non-syntactic constraints such as semantics, intonation, and context influence our resolution of ambiguity?
- Does our prior experience with language, determine our preferences for interpreting the sentences we hear?
- Tuning hypothesis: disambiguate structure based on how it has been most frequently disambiguated in the past.
Multiple constraints

“...the doctor told the woman that...

story
diet was unhealthy
he was in love with her husband
he was in love with to leave
story was about to leave

Prosody: intonation can assist disambiguation

Lexical preference: that = \{Comp, Det, RelPro\}

Subcat: told = \{ [_ NP NP] [_ NP S] [_ NP S'] [_ NP Inf] \}

Semantics: Referential context, plausibility

• Reference may determine “argument attach” over “modifier attach”
• Plausibility of story versus diet as indirect object

The Role of Experience

• Resolve ambiguities according to linguistic experience, early proposals:

• Lexical Guidance Hypothesis: (Ford et al, 1982)
 • Resolve subcategorisation ambiguities using the most likely frame for the verb

• Linguistic Tuning Hypothesis: (Cuetos et al, 1988;1996)
 • Resolve structural ambiguities according to the structure which has previously prevailed

• Relative clause attachment
 • “Someone shot the servant of the actress who was on the balcony”
Relative Clause Attachment

Cross-linguistic RC Preferences

<table>
<thead>
<tr>
<th>Language</th>
<th>Off-line</th>
<th>On-line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>French</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Italian</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Dutch</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>high</td>
<td>low(early), high(late)</td>
</tr>
<tr>
<td>English</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Arabic</td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>Norwegian</td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>Swedish</td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>Romanian</td>
<td>low</td>
<td></td>
</tr>
</tbody>
</table>

- Immediate low attachment, possibly revised quickly (even on-line) ... seems the best account
Probabilistic Models of Language

- Statistics in linguistics [Abney, 1996]
 - Acquisition, change, and variation
 - Ambiguity and graded acceptability
 - Brings ‘performance’ back into linguistics
- Statistics in computational linguistics
 - Effective: accurate and robust
 - Eschews ‘AI’ problem
 - Trainable & efficient

Probabilistic Psycholinguistics

- Probabilistic models of sentence processing
 - Symbolic parsing models + probabilities (statistical)
 - Interactive, constraint-based accounts (connectionist)
- Probabilistic Models: Breadth and Depth
 - SLCM: Maximal likelihood for category disambiguation (Corley & Crocker)
 - Statistical models of human parsing (Jurafsky, Crocker & Brants)
 - Criticisms of likelihood & Information Theoretic Accounts (Hale, Levy, Demberg)
Rational Analysis

• “An algorithm is likely understood more readily by understanding the nature of the problem being solved than by examining the mechanism (and the hardware) in which it is solved.” (Marr, p27)

• Principle of Rationality: The cognitive system optimizes the adaptation of the behavior of the organism.

• If a cognitive processes is viewed as rational, then the computational theory should reflect optimal adaptation to the task & environment:

 1. Derive the Optimal Function
 2. Test against the empirical data
 3. Revise the Optimal Function

Garden Path vs. Garden Variety

• Human Language Processing: Garden Paths
 ✖ Incremental disambiguation process can fail
 ✖ Memory limitations lead to breakdown
 ✖ Garden paths lead to misinterpretations, complexity or breakdown

• Human Language Processing: Garden Variety
 ✔ Accurate: typically recover the correct interpretation
 ✔ Robust: are able to interpret ungrammatical & noisy input
 ✔ Fast: people process utterances in real-time, incrementally

Can we treat language as a rational cognitive system?
Marr’s Levels of Modeling

- Theories/models can characterize processing at differing levels of abstraction.

- Marr (1982) identifies three such levels:
 - *Computational* level: a statement of **what** is computed.
 - *Algorithmic* level: specifies **how** computation takes place.
 - *Implementational* level: is concerned with how algorithms are actually **neurally instantiated** in the brain.

- There may be many algorithms for a given computational theory.

- Many neural implementations could implement a given algorithm.

Relating Models with Data

![Diagram showing computational, algorithmic, and implementational levels with connections to optimal function for the task and empirical data](image-url)
Towards a Rational Analysis

- **Hypothesis:** In general people seem well-adapted for language.

- **Goal:** Our models must account for, and explain:
 - Processing difficulty in specific circumstances
 - Effective performance in general

- **Method:** Apply Rational Analysis

- Use probabilistic frameworks to reason about rational behaviour

- Initial hypothesis: The optimal function is one which maximizes the likelihood of obtaining the correct interpretation of an utterance

\[
\arg\max_i P(s_i) \text{ for all } s_i \in S
\]

- Empirical: lexical access, word category/sense, subcategorization

- Rational: accurate, robust, broad coverage

- Rational Models:
 - explain accurate performance in general: i.e. rational behaviour
 - explain specific observed human behavior: e.g. for specific phenomena

Motivating the Probabilistic HSPM

- **Empirical**: Evidence for the use of frequencies
 - Sense disambiguation [Duffy, Morris & Rayner]
 - Category disambiguation [Corley & Crocker]
 - Subcategorization frame selection [Trueswell et al., Garnsey]
 - Structural preferences [Mitchell et al.]

- **Rational**: Near optimal heuristic behaviour
 - Select the “most likely” analysis
 - Ideal for modular architectures, where full knowledge isn't available

The Grain Problem

- Experience-based models rely on frequency of prior linguistic exposure to determine preferences. What kinds of things do we count?
 - Actual sentence/structure occurrences? Data too sparse?
 - Lexical: Verb subcategorization frequencies. Do we distinguish tenses? Senses?
 - Word level: specific word forms or lemmas? Part-of-speech, how detailed?
 - Tuning is structural: \[NP_1 \mathcal{P}_1 NP_2 \mathcal{R}_1 \] vs \[NP_1 \mathcal{P}_1 NP_2 \mathcal{R}_2 \]
 - High vs Low

- Does all experience have equal weight (old vs. new)?

- Are more frequent “words” or “strings” (idioms) dealt with using finer grain statistics than rarer expressions?
Probabilistic Language Processing

• Task of comprehension: recover the correct interpretation

• Goal: Determine the most likely analysis for a given input:

\[\arg \max_i P(s_i) \text{ for all } s_i \in S \]

• \(P \) hides a multitude of sins:

 • \(P \) corresponds to the degree of belief in a particular interpretation

 • Influenced by recent utterances, experience, non-linguistic context

• \(P \) is usually determined by frequencies in corpora or completions

• To compare probabilities (of the \(S_i \)), we assume parallelism. How much?

Implementation

• Interpretation of probabilities

 • Likelihood of structure occurring, \(P \) can be determined by frequencies in corpora or human completions

• Estimation of probabilities

 • Infinite structural possibilities = sparse data

 • Associate probabilities with grammar (finite): e.g. PCFGs

• What mechanisms are required:

 • Incremental structure building and estimation of probabilities

 • Comparison of probabilities entails parallelism
Lexical Category Disambiguation

- Sentence processing involves the resolution of lexical, syntactic, and semantic ambiguity.

- Solution 1: These are not distinct problems

- Solution 2: Modularity, divide and conquer

- Category ambiguity:
 - *Time flies like an arrow.*

- Extent of ambiguity:
 - **10.9%** (types) **65.8%** (tokens) (Brown Corpus)

The Model: A Simple POS Tagger

- Find the best category path \((t_1 \ldots t_n)\) for an input sequence of words \((w_1 \ldots w_n)\):

 \[
P(t_0, \ldots t_n, w_0, \ldots w_n)
 \]

- Initially preferred category depends on two parameters:

 - Lexical bias: \(P(w_i|t_i)\)

 - Category context: \(P(t_i|t_{i-1})\)

- Categories are assigned incrementally: Best path may require revision
2 Predictions

• The Statistical Hypothesis:

 • Lexical word-category frequencies, \(P(w_i|t_i) \), are used for initial category resolution.

• The Modularity Hypothesis:

 • Initial category disambiguation is modular, and not determined by (e.g. syntactic) context beyond \(P(t_i|t_{i-1}) \).

• Two experiments investigate

 • The use word-category statistics

 • Autonomy from syntactic context

Statistical Lexical Category Disambiguation

• Initially preferred category depends on:

 \[
 P(t_0, \ldots, t_n, w_0, \ldots, w_n) \approx \prod_{i=1}^{n} P(w_i | t_i) P(t_i | t_{i-1})
 \]

• Categories are assigned incrementally

 • the warehouse *prices* the beer very modestly
 • DET N N/V V!

 • the warehouse *prices* are cheaper than the rest
 • DET N N/V N ...

 • the warehouse *makes* the beer very carefully
 • DET N N/V V

 • the warehouse *makes* are cheaper than the rest
 • DET N N/V N!

• Interaction between bias and disambiguation
• Category frequency determines initial decisions

Lexical bias: \(P(w_i|t_i) \)
Category context: \(P(t_i|t_{i-1}) – \text{constant!} \)
Trained on the Susanne corpus
Modular Disambiguation?

- Do initial decisions reflect integrated use of both lexical and syntactic constraints/biases or just (modular) lexical category biases?
 - N/V bias with immediate/late syntactic disambiguation as noun

- Main effect of bias at disambiguation:
 - Initial decisions ignore syntactic context.
 - Problematic for lexicalist syntactic theories
 - At c2, VA/VU difference is significant
 - Implies lexical category doesn’t include number (?!)

a) [V-bias, N-disamb] The warehouse *makes are* cheaper than the rest.
b) [V-bias, N-unamb] The warehouse *make is* cheaper than the rest.
c) [N-bias, N-disamb] The warehouse *prices are* cheaper than the rest.
d) [N-bias, N-unamb] The warehouse *price is* cheaper than the rest.