Quick Recap: Syntactic Accounts

- **Frazier**: early parsing decisions driven by purely syntactic heuristics

- **MA** and **LC** were argued to be by-products of a race mechanism

- **Pritchett**:
 - **Theta-attachment** determines preferred parse
 - **Theta-reanalysis** constraint determines when reanalysis of difficult
 - Eager dependency-formation plays a strong role in driving parsing decisions:
 - What about **long-distance dependencies**?
Long Distance Dependencies

• Wh-Fillers:
 • \(\text{Who}_i \) did Fred tell Mary \(e_i \) left the country? \hspace{1cm} \text{dispreferred}
 • \(\text{Who}_i \) did Fred tell \(e_i \) Mary left the country? \hspace{1cm} \text{preferred}

• Subject-Relative preference:
 • I met the man \(e_i \) that John likes \(e_i \). \hspace{1cm} \text{dispreferred}
 • I met the man \(e_i \) that \(e_i \) likes John. \hspace{1cm} \text{preferred}

• Active Filler Strategy: \text{("Gap as a first resort")}
 • When a filler has been identified, rank the possibility of assigning it to a gap above all other options.

Further observations ...

• Filled-Gap effect:
 • My brother wanted to know \(\text{who}_i \) Ruth will bring (*\(e_i \)) \text{us} home to \(e_i \) at Christmas
 • My brother wanted to know if Ruth will bring \text{us} home to Mom at Christmas

• Found an increased reading time at \text{us}, interpreted this as surprise

• Intuitively easy:
 • \(\text{Who}_i \) (\(e_i \)) did you want (\(e_i \)) Mother to bake (\(e_i \)) a cake for \(e_i \)?
 • ... despite 3 possible earlier gap locations
Gaps versus Dependencies

• Consider:

 • \[\text{In which tin}] \text{ did you put the cake} \text{ e}_i \? \quad \text{Gap account}\]

 • \[\text{In which tin}] \text{ did you put the cake} \? \quad \text{Dependency account}\]

• If keeping the filler in memory causes difficulty, we can compare:

\[\text{In which tin}] \text{ did you put the cake that your little sister baked for you} \text{ e}_i \? \quad \text{Easy}\]

\[\text{Which tin}] \text{ did you put the cake that your little sister baked for you} \text{ in}_i \text{ e}_i \? \quad \text{Hard}\]

• Intuitive support for the dependency account, and against gaps.

Other evidence

• Implausibility detected immediately at the verb, as shown by increased reading times.

 • That’s the [pistol/garage] with which the heartless killer shot the hapless man \text{ e}_i \text{ yesterday afternoon}.

• Garnsey et al (1998) found an N400 at the verb, for the implausible condition

 • The businessman knew which [customer/article] the secretary called \text{ e}_i \text{ at home}\]

• Pickering and Barry (1996) argued that a dependency-based account was preferable to a trace-based account.
Parsin in 2 dimensions

- Gaps don't exist in the input, so we needn't wait until they are found
- We can associate a filler & gap as soon as the structure licenses it:

\[
\begin{array}{c}
\text{CP} \\
\text{WH} \\
\text{In which tin,} \\
\text{C'} \\
\text{C} \\
\text{IP} \\
\text{NP} \\
\text{V'} \\
\text{PP} \\
\text{V} \\
\text{NP} \\
\text{the cake that your little sister baked for you}
\end{array}
\]

Consider: Den Hund; sahj Maria ej ei.

Deterministic Parsing

- Alternative to reanalysis accounts: ensure only one possible parsing action at any point in parsing
 - Avoid/delay rule selection until it is fully determined. How?
 - bottom up (e.g. S/R or LR) \textbf{plus lookahead} [Marcus; Berwick & Weinberg; Abney]
- Advantage: very fast, clear predictions
- Disadvantages:
 - not fully incremental (up to 3 \textit{constituents} of look-ahead)
 - unsuccessful for head-final languages
 - wrong predictions: e.g. no gradedness of processing difficulty
Monotonic Parsing

• Inspired by determinism and reanalysis:
 • many local ambiguities seem to cause little difficulty
 • contra predictions of naive backtracking
 • Gorrell; Weinberg; Sturt & Crocker

• Provides a richer set of ‘tree-building’ operations which means destructive backtracking is not always required

• Predicts ‘reanalysis’ outwith these operations to be difficult

Talking about Talking about Trees

• Traditional theories locate reanalysis in the parser: “re-parsing”

• Can local ambiguity be handled using underspecified representations?
 • Representations which allow some ambiguity to remain, and be later removed without (destructive) re-parsing.

• Description-Theory: (Marcus, Hindle & Fleck, 1983)
 • Uses tree descriptions, not trees: e.g. dominance and precedence
 • Permits immediate interpretation, but allows insertion of nodes & branches
Monotonic Parsing [Gorrell; Sturt & Crocker]

- Trees are described as a set of nodes, and a set of precedence and dominance relations:
 - *John knows Mary*

 ![Tree Diagram](image)

 \{\text{dom}(S,NP_1), \text{dom}(S,VP), \text{dom}(S,V), \text{dom}(S,NP_2), \text{prec}(NP_1,VP), \text{dom}(VP,V), \text{dom}(VP,NP_2), \text{prec}(V,NP_2) \ldots\}

Properties of Trees

- Single root condition: a single root node dominates all nodes
 \[\exists x \forall y \cdot \text{dom}(x,y)\]

- Exclusivity condition: no two nodes can stand in dom & prec relations
 \[\forall x, y \cdot \text{prec}(x,y) \lor \text{prec}(y,x) \iff \neg \text{dom}(x,y) \land \neg \text{dom}(y,x)\]

- Inheritance: nodes inherit precedence properties of their ancestors
 \[\forall w, x, y, z \cdot \text{prec}(x,y) \land \text{dom}(x,w) \land \text{dom}(y,z) \rightarrow \text{prec}(w,z)\]

- *dom* and *prec* are transitive relations

- *dom* is reflexive, *prec* is irreflexive
Constraints on the Model

• **Strict incrementality**: words are connected to the tree description as they are encountered

• **Coherence**: tree properties must always be satisfied, the tree must be grammatically licensed

• **Full specification of nodes**: no features on nodes (e.g. bar-level) can be left unspecified

• **Informational monotonicity**: the tree description at state \(n \) is a subset of the description at state \(n+1 \)

• **Obligatory assertion of precedence**: precedence must be specified for sisters

Monotonic Parsing and Reanalysis

• **Easy**: *Monotonic* reanalysis
 “John knows Mary is smart”

• **Hard**: *Non-monotonic* reanalysis
 “While John walked the dog barked”

• How does the parser actually work?

 • The monotonic parser uses precomputed tree descriptions (e.g. for lexical items), and “macro” operations which meet the constraints.

 • Non-monotonic operations are not permitted

 • Easy reanalysis parsing is “monotonic”.

 • Difficult reanalysis, when tree-descriptions are changed non-monotonically
Monotonic Parsing Operation

- Tree-lowering: “John knows Mary … “ “John knows Mary is smart”

\[
\begin{align*}
S & \\
NP1 & \ \\
\text{John} & \ \\
V & \ \\
\text{knows} & \ \\
NP2 & \ \\
\text{Mary} & \ \\
\end{align*}
\]

\[
\begin{align*}
S & \\
NP1 & \ \\
\text{John} & \ \\
V & \ \\
\text{knows} & \ \\
S2 & \ \\
NP2 & \ \\
\text{Mary} & \ \\
\text{is smart} & \ \\
\end{align*}
\]

\[
\{\text{dom}(S,NP1), \text{dom}(S,VP), \text{dom}(S,V), \text{dom}(S,NP2), \text{prec}(NP1,VP), \text{dom}(VP,V), \text{dom}(VP,NP2), \\
\text{prec}(V,NP2), \text{dom}(VP,S2), \text{dom}(S2,NP2), \text{prec}(NP2,VP2) \ldots \}
\]

Theta-Reanalysis: Easy

- Reanalysis to a position within the original theta-domain is easy.

\[
\begin{align*}
S & \\
NP & \ \\
The \ student & \ \\
V & \ \\
\text{knew} & \ \\
NP & \ \\
\text{the solution} & \ \\
\end{align*}
\]

\[
\begin{align*}
S & \\
NP & \ \\
The \ student & \ \\
V & \ \\
\text{knew} & \ \\
NP & \ \\
\text{the solution} & \ \\
\text{was incorrect} & \ \\
\end{align*}
\]
Non-Monotonic Parsing

- Predicting difficult reanalysis: While John walked the dog … barked.

Theta-Reanalysis: Difficult

- Reanalysis to a position outside the original theta-domain is difficult.
Parsing Operations: Attachment

• Left attachment:

• Right attachment:

TAG Adjunction

• The operations of the monotonic parser resemble those of Tree Adjoining Grammar.
Well-known local ambiguities

NP/VP Attachment Ambiguity:
“The cop [saw [the burglar [with the binoculars]]]”
“The cop saw [the burglar [with the gun]]”

NP/S Complement Attachment Ambiguity:
“The athlete [realised [his goals] last week]”
“The athlete realised [[his goals] were unattainable]”

Clause-boundary Ambiguity:
“Since Jay always [jogs [a mile]] [the race doesn’t seem very long]”
“Since Jay always jogs [[a mile] doesn’t seem very long]”

Reduced Relative-Main Clause Ambiguity:
“[[The woman [delivered the junkmail on Thursdays]]]”
“[[The woman [delivered the junkmail]] threw it away]”

Relative/Complement Clause Ambiguity:
“The doctor [told [the woman] [that he was in love with her]]”
“The doctor [told [the woman [that he was in love with]] [to leave]]”
Psycholinguistic Evidence

• Are there really two types of reanalysis?

 • **NP/S (A):** “The woman saw the famous doctor had been drinking”

 • **NP/Z (A):** “Before the woman visited the famous doctor had been drinking”

 • **NP/S (U):** “The woman saw that the famous doctor had been drinking”

 • **NP/Z (U):** “Before the woman visited, the famous doctor had been drinking”

• All verbs are biased (BNC) towards NP complement

• To make sure the object attachment is initially adopted, forcing reanalysis

• Plausibility of the direct object analysis is similar (pre-test).

 Sturt, Pickering & Crocker, JML, 1999

Results

• Reading times: Region 3

 “The woman / saw the famous doctor / had been drinking / all day”

 1.400
 1.050
 700
 350
 0

 NP/S (a) NP/S (u) NP/Z (a) NP/Z (u)

 • Main effects of construction type, ambiguity, and a significant interaction

 • GP effect: NP/Z (400ms) vs. NP/S (87ms)
Search in Parsing/Reanalysis

- (Some) reanalysis is simply monotonic attachment: e.g. tree-lowering.
- What if there are multiple such “lowering” attachments
- Consider a double NP/S ambiguity:
 - “I know the man who believes the countess killed herself”
 - “I know the man who believes the countess killed himself”
 - Which is easier?
- How does the parser search for an attachment?

The Trees

```
S
   /\  \\
  NP  VP
     /\  \\
    I  V  NP
     |  |  \
    know the man who believes  the countess killed
```

```
S
   /\  \\
  NP  VP
     /\  \\
    I  V  NP
     |  |  \
    believes  the countess
```
Search

- English appears to use a bottom-up search strategy for attachment
 - late closure, recency
 - *Someone shot the servant of the actress who was on the balcony*

Possibly other influences:

- Verb bias? Predicate proximity (Gibson)?

Japanese seems to be top-down

- Head final, left-branching language (Sturt & Crocker, 1996)

Summary of Reanalysis

- Frazier: no clear account

- Pritchett: cost determined by syntactic nature of reanalysis (TRC)

- Monotonic Parsing:
 - Representations allow for some kinds of local ambiguity
 - Some reanalysis is monotonic (easy), some is destructive (difficult)
 - Similar in some respects to Pritchett's theory (of reanalysis)
 - Search mechanism still required when multiple reanalyses is possible
Summary of Syntactic Models

• Syntactic Parsing Theories:
 • Frazier: emphasis on syntactic structure/form
 • Pritchett: emphasis on syntactic dependencies/content

• Assume serial, incremental parsing. Reanalysis causes difficulty

• Preference to associate fillers with role-assigners immediately

• Monotonic models enable some local ambiguities to be revised without destructive reanalysis
 • distinguish easy and difficult “garden paths”