Computational Psycholinguistics

Lecture 1: Introduction

Matthew W. Crocker
crocker@coli.uni-sb.de

Quick Survey

• Taking the Foundations Course?
• Linguist?
• Computer Scientist?
• Psychologist?
• Programming knowledge? What?
“To understand and model the processes that underlie the human capacity to understand language”

- How does the human language processor work?
- How is it realized in the brain?
- How can we model it computationally?
- Where does it come from?
- How does language interact with other cognitive systems and the environment?

What is it?

- Using computational techniques to better understand and model how people produce and comprehend language
- Competence: Principles that relate utterances to underlying meaning?
- Performance: *How* do people establish this relationship during *on-line* language processing?
- Computational psycholinguistics seeks cognitively plausible theories about about both mental rules and representations, and about cognitive processes
- Computational psycholinguistics seeks to realize such theories as implemented computational models of human knowledge and behavior
Different from NLP?

- Early NLP (e.g. Winograd, 1983) clearly viewed itself as building models of human understanding
 - Proposals were heavily informed by intuitions about how people understand, and linguistic theories about mental representations
- Modern NLP has shifted emphasis:
 - Application: do limited tasks accurately and robustly, often without real understanding (e.g. spam filters, IR, document clustering, summarization)
 - Deep NLU: Emphasis is on representations, coverage and efficiency. Little concern with cognitive plausibility

Areas of Psycholinguistics

- Speech perception and articulation
 - visual word recognition
- Lexical access and lexical choice
 - The mental lexicon
- Sentence processing:
 - syntactic, semantic, pragmatic
- Discourse and dialogue
 - Anaphora, priming, alignment
- Situated language processing:
 - interaction with task, context
 - the immediate environment
- Embodied language processing:
 - grounding language in action/perception systems of the brain
 - Language Acquisition and Development
 - Language Evolution
Areas of Psycholinguistics

- Speech perception and articulation
 - visual word recognition
- Lexical access and lexical choice
 - The mental lexicon
- Sentence processing:
 - syntactic, semantic, pragmatic
- Discourse and dialogue
 - Anaphora, priming, alignment
- Situated language processing:
 - interaction with task, context
 - the immediate environment
- Embodied language processing:
 - grounding language in action/perception systems of the brain
 - Language Acquisition and Development
 - Language Evolution

Models of Sentence Processing

- Language is complex & dynamic
 - multiple levels of representation & knowledge
 - each level has rich internal structure, unique constraints & representations
 - processing unfolds over time: both across levels, and in response to signal
 - levels interact in dynamically, and in complex ways
- We need computational models to understand ...
 - the dynamics & interactions of processing; the role of processing limitations
 - relate processing with empirical data; make predictions
So what ...

- Speech streams include no discrete boundaries to indicate where one word ends and another begins.

- We understand non-fluent speech, fragments, interruptions and non-native speakers. Incomplete sentences are no problem for us.

- We deal with ambiguity all the time without breaking down. Computer parsers often maintain thousands of possible interpretations.

- We have a vocabulary of about 60,000 words. We access somewhere between 2-4 words/second (low error rates ~ 2/1000 words)

- We understand speech even faster than we can produce it. We are so fast, we can even finish each others sentences.
Human language processing

- People are highly accurate in understanding language
- People process language rapidly, in real-time
- People understand and produce language incrementally
- People even anticipate what’s going to be said next
- People rapidly adjust to context, and are robust
- People achieve this despite limitations on processing resources
- People do make some interesting errors, and exhibit breakdown in certain situations ...

Human language processing

- People are highly **accurate** in understanding language
- People process language **rapidly**, in **real-time**
- People understand and produce language **incrementally**
- People even **anticipate** what’s going to be said next
- People rapidly adjust to **context**, and are **robust**
- People achieve this despite **limitations** on processing resources
- People do make some interesting **errors**, and exhibit **breakdown** in certain situations ...
But things don’t alway go smoothly…

- Police police police police police.
 - *Internal affairs investigates the detectives that monitor other police.*
- The boat floated down the river sank.
 - *The boat that we floated down the river eventually sank.*
- The child put the candy on the table in his mouth.
 - *The child put the candy that was on the table in his mouth.*
- The editor authors the newspaper hired disliked resigned.
 - *The editor that reporters that the newspaper hired disliked resigned.*
- In New York, someone is hit by a car every 10 minutes, but he is still alive.

Lexical access

- Visual & spoken word recognition
 - Central importance of lexical frequency
- Incremental & parallel access
 - words with similar onset & offset are activated (*beetle* vs *beaker* vs *speaker*)
- Multiple meanings
 - “Bug”: both *insect* & *spy device* senses are accessed initially
- Rapid decay of non-preferred sense
- Key issue: Bottom-up versus Top-down “selection”
Sentence processing

- Sentence processing is the means by which the words of an utterance are combined to yield and interpretation
 - All people do it well
 - It is a difficult task: complexity and ambiguity
 - Unlike lexical access, it can’t simply be ‘retrieval’

- **Compositional**: interpretation must be constructed on-line, rapidly
 - Even for sentences with novel structures, or words used in novel positions

Context Free Grammars

- Context-free grammar rules:

 S → NP VP
 PP → P NP
 VP → V NP
 VP → V
 NP → NP PP
 NP → Det N

 Det → the
 Det → every
 N → man, woman
 N → book
 P → with
 V → read, reads

- Node admissibility criterion:

 A tree is admitted by the grammar, if for each non-terminal node, N, with daughters Ds, there is a rule in the grammar of the form: N → Ds.
Simple example

Theories of Linguistic Knowledge

- Theories of Syntax

- **Representations**: Trees, feature structures, dependencies

- **Structure building**: PS-rules, transformations, unification, composition, tree substitution

- **Constraints on representations**: Case marking, theta-Criterion, c-command, binding principles, head-foot principle

- Competence Hypothesis

 - The mechanisms of language comprehension directly utilize the rules and representations of the linguistic theory
The Competence Hypothesis

• Knowledge: **Competence hypothesis**

 • Need to recover the meaning of sentences/utterances

 • Assumptions about (levels of) representations

 • Linguistic theory is isomorphic to human linguistic knowledge

 • Comprehension and production share same knowledge

 • **Weak competence**: people recover representations that are isomorphic to those of linguistic theories

 • **Strong competence**: people directly use the grammatical knowledge & principles of linguistic theories

The Modularity Issue

• Is language distinct from other cognitive & perceptual processes?

 • e.g. vision, smell, reasoning ...

• Do distinct modules exist *within* the language processor?

 • e.g. word segmentation, lexical access, syntax ...

• What is a module anyway!?
Architectures and Mechanisms

- What does “distinct” mean:
 - Representational autonomy: e.g. *phonological* versus *logical* representations
 - Possibly interactive processes
 - Procedural autonomy: e.g. *lexical access* versus *parsing*
 - Possibly shared representations

- How is the language module organized/interact with other systems?
 - Does architecture affect possible mechanisms?
 - What is the interface and bandwidth between modules?

Strong competence & modularity

- Fodor’s proposals emphasis language as a module, distinct from other perceptual cognitive abilities

- Linguistic theories suggest that language itself may consist of sub-levels: phonology, morphology, syntax, semantics ...
 - Each with different rules and representations
 - Do these correspond to distinct processes?
 - Are these processes modules?
A Modular Architecture

Support for Linguistic Modularity

- Modular lexical access versus syntax: Forster
 - all possible word meanings temporarily available
 - no immediate influence of syntactic context
- Modular syntax versus semantics: Frazier
 - initial attachment ambiguities resolved by purely structural preferences
 - no immediate effect of semantics or context
- Dissociation in language impairment at different levels
 - lexical, syntactic, semantic; production versus comprehension
Attachment Preferences

Against linguistic modularity

- Empirical evidence from on-line methods
 - “immediate” influence of animacy, frequency, plausibility, context …
 - The woman sent the flowers was pleased
 - The patient sent the flowers was pleased

- Appropriate computational frameworks:
 - symbolic constraint-satisfaction systems
 - connectionist systems & competitive activation models
 - Homogenous/Integrative Linguistic Theory: HPSG
 - multiple levels of representation within a unified formalism
Human Language Processing

- We understand language incrementally, word-by-word
 - How do people construct interpretations?
- We must resolve local and global ambiguity
 - How do people resolve lexical ambiguity?
 - How do people decide upon a particular interpretation?
- Decisions are sometimes wrong!
 - What information is used to identify we made a mistake?
 - How do we find an alternative interpretation?
- Answers can reveal important details about the underlying mechanisms

Marr’s Levels of Modeling

- Theories/models can characterize processing at differing levels of abstraction
- Marr (1982) identifies three such levels:
 - Computational level: a statement of what is computed
 - Algorithmic level: specifies how computation takes place
 - Implementational level: is concerned with how algorithms are actually neurally instantiated in the brain
- The may be many algorithms for a given computational theory
- Many neural implementations could implement a given algorithm
Relating Models with Data

Roadmap

- Theories of sentence processing:
 - modularity, parsing strategies, information sources, reanalysis
- Symbolic parsing models:
 - incremental parsing, ambiguity resolution, memory load, probabilistic models
- Rational, probabilistic parsing models:
 - Symbolic parsers augmented with probabilities, derived from experience
- Information theoretic approaches:
 - Modeling communication as a \textit{bounded} rational probabilistic problem
Tutorials

• We'll be using various software packages and programs to make some of the concepts more concrete:

 • Prolog implementations of incremental parsing algorithms

 • Prolog implement of incremental HMM POS tagging

 • TnT statistical POS tagger

 • Roark's incremental statistical parser

• For Wednesday: Install SWI-Prolog on your laptops, and bring them … if you can’t, then partner with someone.

 • http://www.swi-prolog.org

Course details

• Weekly lectures (Mon 2-4pm) and tutorials (Wed 2-4pm)

 • Participation in, and completion of, all tutorials is required!

• Assessment: Final Exam (100%), Date: Mon, February 4, 2019

 • All tutorial assignments must be successfully completed to sit the exam

• Course materials (overheads and most readings) will be made available on the course homepage (linked from general course page)

• Contact: please e-mail first – crocker@coli.uni-sb.de