Overview

Introduction to Psycholinguistics

Lecture 7

Lexical Processing - Part I

Pia Knoeferle & M. W. Crocker Department of Computational Linguistics Saarland University SS 2006

Some questions

- □ When we see or hear a word
 - How do we access its representation within the lexicon
 In the face of various kinds of ambiguity and noise
 - ➡ How do we know whether an item is stored there?
 - □ Word vs. nonword (e.g., lisen=pronouncable pseudoword, Irtij=nonword, lesen=word)
 - What are the differences between understanding spoken and visually presented words?
 - Solution Sol

3

- Research issues in lexical processing (comprehension)
- Lexical processing: spoken vs. visual word recognition
- □ Stages of lexical processing
- Serial vs. parallel
- Factors that influence word identification
- Competition
- □ Some research methods in spoken word recognition
 - Perceptual identification
 - Shadowing
 - Lexical decision
 - Eye tracking: a recent method

P. Knoeferle

2

Definitions and characteristics

- □ Spoken/visual word recognition
 - Interface between speech/visual perception & higher levels of cognitive processing
 - Translating acoustic/visual signals into mental representations from long-term memory
- □ Some characteristics
 - ➡ Happens very fast
 - □ Lexicon of average listener contains around 65.000 words from which to choose during comprehension in real-time
 - □ Selection of the appropriate word as early as 250 ms into a word
 - ➡ Robustness: Errors are rare
 - □ In a corpus of 200.000 words, 86 lexical errors (< 1 in 2000 words)

Spoken versus visual word recognition

Early models of word recognition typically were based on insights from studies on visual word recognition

Solution Visual word recognition models: often template-matching

- Many models of SWR based on models of visual word recognition
- But: Some differences between written and spoken language

Written text	Speech		
Distributed over space	Unfolds over time		
Re-fixation of previous words	Re-fixation is not possible		
Constant signal	Acoustic-phonetic variation		
Linearity: successive sounds represented by strings of letters	Phonemes overlap and are co- articulated		

P. Knoeferle

5

Spoken versus visual word recognition

Translating from a model of visual word recognition to SWR

Imagine a row of Easter eggs carried along a moving belt; the eggs are of various sizes, and variously colored, but not boiled. At a certain pint, the belt carries the row of eggs between the two rollers of a wringer, which quite effectively smash them and rub them more or less into each other. The flow of eggs before the wringer represents the series of impulses from the phoneme source; the mess that emerges from the wringer represents the output of the speech transmitter. (Hockett, 1955, p. 216)

- Solution ⇒ Account of SWR must model information integration over time
- Transient nature of signal must be taken into account
- Invariant mapping of acoustic features to phonemes difficult
 E.g., co-articulation information would be lost
 Acoustic-phonetic variation difficult for a template-matching account
- □ In today's lecture we will focus on spoken word recognition

P. Knoeferle

Stages of lexical processing

- Motor representation cont.
 - One variant of this model: Motor theory
 - Sextract articulatory gestures ((i.e., lip rounding, tongue position)
 - ➡ Listener models motor movements of the speaker
 - Section Se
 - Pros
 - Copes with speaker differences (listeners generate their own candidates)
 - Note: specification of motor movements must be rather abstract
 - Mute people understand speech & we understand speech that we cannot ourselves produce
- Abstract units such as phonemes (e.g., Pisoni & Luce, 1987) or syllables (Mehler, 1981)

Stages of lexical processing

- Stages of lexical processing
 - ➡ Identification: Initial contact, lexical selection, word recognition
 - ➡ Lexical access and integration
- □ Initial contact with the lexicon after processing speech input
 - Theories differ in their assumptions regarding the form of representation that makes contact with the lexicon
- □ Form of representation
 - Temporally-defined spectral templates
 - □ Lexical access from spectra (LAFS) model (Klatt, 1989)
 - Frequency with which air particles vibrate plus intensity/loudness in a sound wave form pattern that matches items in the lexicon
 - □ Problems: inter-speaker variability
 - Motor representation in analysis-by-synthesis models (Halle & Stevens, 1962; Stevens, 1960)
 - Recognize speech by the actions necessary to produce the sound

8

6

Stages of lexical processing

- Lexical selection
 - Lexical entries that match the representation are "activated"
 - Activation increases/decreases until one lexical entry is selected
 - Depending on the model, the degree of activation is
 - □ All-or-none
 - Based on word properties such as word frequency or goodness of fit with sensory data
 - Candidate set changes over time
- □ Word recognition

F

- Section by the selection phase when only one candidate remains
- Competition process
- Lexical access: phonological, semantic, syntactic, and pragmatic information becomes available
- □ Integration: Integrating the word into the sentence context

P. Knoeferle	
--------------	--

Factors influencing word identification

- Lexical similarity
 - Measure for lexical similarity in visual word recognition
 - N-metric
 - ➡ Two words are visual neighbours if they differ by only one letter
 - Examples: sand, wand (attention: only visual neighbours)
 - □ Spoken word recognition: Variant of the N-metric
 - Two words are neighbours if they differ by only one phoneme
 Examples: vote and vogue
 - Dense vs. sparse neighbourhoods
 - Sell has many neighbours (tell, well, bell, sill, till)
 - Neighbourhood size & frequency of words in the neighbourhood affect recognition (above effects of frequency of target word)
 - □ If a word is phonetically similar to few and/or rare other words
 - Easier recognition than for words with many similar and/or frequent other words
 - (Luce, 1986; Luce & Pisoni, 1998)

11

9

- High frequency words with few, low-frequency neighbours are most
- P. Knoeferle easily recognized

- Factors influencing word identification
- We'll now consider in more detail the factors influencing lexical access time and the competition process
- Factors influencing the time/accuracy of lexical access
 - ➡ E.g., Word length, word frequency, lexical similarity, uniqueness point, semantic priming
 - Serview word frequency and lexical similarity here
- Word frequency
 - ➡ High vs. low frequency words
 - ➡ High frequency words recognized faster and more accurately
 - Savin (1963): high and low frequency words presented in white noise (noise from combining sounds of all frequencies) for perceptual identification
 - She words recognized at lower signal-to-noise ratios than LF words
 - Servors: higher-frequency words named rather than the target words
 - HF words required less acoustic phonetic info for recognition than LF words in a gating task (Luce et al., 1984) 10
- P. Knoeferle

Serial vs. parallel

- Does word recognition take place serially or parallel?
 - Serial models account well for frequency effects
 - □ Search of words in frequency-ordered way, self-terminating search
 - But have problems accounting for speed of lexical processing
 - Recall: recognition can be as fast as 200-250 ms
 - Number of searched items must be limited
 - Parallel search
 - Most models today agree that there is some amount of parallel competition
 - Unlimited vs. limited capacity
 - How competition is realized depends on individual models

Competition

	Findings on effects of neighbourhood size & the frequency of neighbours ↔ Recognition does not solely depend on a match between spoken input and a lexical representation		Some ways how competition could take place			
			(1) Input /s/	Target speed	Competitors single, sit, spacious, speech, spray, speak, spacious, speech	IS,
	с¢	Recognition also depends on the degree to which the input matches representations of alternative words	/spi:/ /spi:d/	speed speed	spray, speak speech, speak speed	
	lf m the	any word candidates match incoming speech signal	Input /s/	Target speed	Competitors single, sit,spacious, speech, spray,	
	сþ	Strong competition and slower recognition process	/sp/	speed	speak, spacious, speech, spray, speak, pain	
	с\$	Parallel activation of candidates matching in onset (<i>candle/candy</i>) or any other part of speech input (rhyme: <i>speaker/beaker</i>)	/spi:/ /spi:d/	speed speed	speech, speak, pee speech speak, pee	•/
P. Knoeferle						13

Uniqueness point

□ Po po	int where a word becomes unambiguous (also <i>identification int</i>)
ंद	recognition point
Ę	Examples
	cheapness, cheap, cheaper/st: cheapness
	meeting, meet, meets: meeting
	Elefant: Elefant
4	How to discover the uniqueness point
	Look up words and their pronunciations in a dictionary
	Gating paradigm
	Playing incomplete words to listeners (i.e., with the ending cut off), and measure people's guesses about word identity
Ę	 Faster lexical access for words with an earlier compared to later uniqueness point

P. Knoeferle

14

Methods in spoken word recognition

- Now we have reviewed some findings. Let's consider the methods used for examine lexical processing
- Perceptual identification
 - Presentation of a (degraded) stimulus to participants
 - ➡ Task: identify the stimulus, and respond with a word (open-set: any word; closed-set: response alternatives given prior to a trial)
- Pros
 - Suitable for examining structural relationships among words in the mental lexicon (sensitive to frequency and lexical similarity effects)
- □ Cons
 - Section Se
 - Use of a degraded signal
 - □ Might lead to guessing strategies (not reflect normal processing)
 - Measure of decision rather than recognition processes

P. Knoeferle

Methods in spoken word recognition

- Shadowing and mispronunciation detection
- People repeat spoken utterances in near synchrony with a speaker
 - S Marslen-Wilson (1985)
 - Both error rates and shadowing latencies increased the more syntactic semantic, and lexical information in the repeated utterance were anomalous
 - □ Shadowers do not simply repeat but analyze the utterance
 - Actively engage in syntactic and semantic analysis of the input during shadowing
 - ➡ Problems
 - High inter-individual variation in participants
 - Solution State State
 - Solution State State

Methods in spoken word recognition

- Lexical decision
 - Presentation of isolated words
 - Stask: Classify the stimuli as words or non-words
 - □ Spoken version: words vs. pronounceable non-words
 - □ Written version: words, non-words, pronounceable non-words
 - Measure: response latency and accuracy

Stimuli	Туре	Mean decision time
child	word	708 ms
tree	word	703 ms
csrt	non-word	644 ms
cotch	non-word (pronounceable)	746 ms

- Response latencies for non-words are faster than words/pronounceable non-words
 - Purely form-based detection of totally illegal words

P. Knoeferle

17

cotch

Eye-tracking spoken word recognition

- □ Lexical decision
 - ➡ "Online" paradigm
 - But reaction times are measured after a word has been presented
 - \square Do not reveal the time course of processing

□ Eye-tracking

⇒ Enables us to investigate processes during word recognition

P. Knoeferle

P. Knoeferle

18

Example Tanenhaus (1995)

Example Tanenhaus (1995)

Results Tanenhaus

Fixations over time

- □ Method: video-based eye tracker (33 ms sampling rate)
- Analysis of gaze data from target word onset until offset
 - Onset time of first saccade to the target with versus without a competitor

- □ Findings of a tight time-lock between
 - ⇒ Eye movements and spoken utterance comprehension
 □ Makes it possible to use eye movements to examine comprehension process online
 - Speed of word recognition
 - ➡ Retrieving lexical information
 - Begins prior to word offset (ca. 200 ms to launch a programmed eye movement)

P. Knoeferle

21

P. Knoeferle

22

Summary

- Spoken vs. written word recognition and implications for modeling
- □ Stages of lexical processing
 - Identification: Initial contact, lexical selection, word recognition
 - Section ⇒ Lexical access and integration

Factors affecting lexical access

⇒ E.g., Word frequency and lexical similarity

- Scompetition process
- □ Methods used to study spoken word recognition