Overview

3

Introduction to Psycholinguistics Lecture 4

Experimental Methods I

Pia Knoeferle & M. W. Crocker **Department of Computational Linguistics**

Saarland University

SS 2006

Why do we run experiments?

To answer a research question or test a theory/hypothesis

➡ Non-experiment

- Introspection
 - S sentence A harder to understand than B?
- Collection of data
 - Speech errors (e.g., spoonerisms, blendings)
- □ ? further ideas
- ⇒ Experiment
 - Some definitions
 - Systematic observations of a specific behaviour under controlled circumstances
 - Set of actions and observations, performed to verify or falsify a
 - hypothesis or research a causal relationship between phenomena ➡ The act of conducting a controlled test or investigation
 - Quasi-experimental designs
 - Experimental designs

□ What's an *experiment* and why do we run experiments?

- Building statistical models for observed data
 - ⇒ Standard deviation

Empirical research cycle

- Frequency distributions
- □ Samples: representative of the population? Standard error
- Hypothesis testing
- Choosing a statistical test

Field, 2005: Howell, 2004

P. Knoeferle

2

Why do we run experiments?

Quasi-experimental designs

⇒ Example (made up)

Gender differences in using hedges versus assertions

	Hedging expressions	Assertive statements
Men	(1)	(1)
Women	(2)	(2)

Problem

Sender is not a freely manipulated variable; could correlate with other variables (I.e., your findings might result from an other variable rather than gender)

□ For some research questions unavoidable ⇒ Gender, class, intelligence

P. Knoeferle

Why do we run experiments?

Experimental designs

➡ Example

□ Effects of preparation on using hedges versus assertions

	Hedging expressions	Assertive statements
Prepared	(1)	(1)
Unprepared	(2)	(2)

➡ All variables can be freely manipulated

Participants can randomly be assigned to the experimental conditions

Avoids systematic effects of other (correlated) variables through randomization

P. Knoeferle

5

Recap: Theories and models

- □ Last lecture
 - Sesearch question

How does the comprehension system build a syntactic analysis of a sentence?

Theory1 (simplest-first)

 We follow strategies (e.g., choose the simplest analysis first)

➡ Theory2

We do not chose the simplest analysis first

P. Knoeferle

6

Cycle of empirical research

Cycle of empirical research

Cycle of empirical research: example

- Operationalize
 - If simplest-first theory is true, people should experience processing difficulties when simplest analysis is disconfirmed
- Hypotheses
 - ➡ H1 (Experimental hypothesis)
 - Processing difficulty when simplest analysis disconfirmed
 - ⇒ H0 (*Null hypothesis*)
 - □ No processing difficulties
- Design
 - Independent variable(s)
 - What we manipulate
 - Dependent variable(s)
 - What we measure

P. Knoeferle

9

Cycle of empirical research: example

□ Method?

- Lexical decision, naming, window-methods in self-paced reading (SPR), eye tracking, neuropsychological methods
- ⇒ Lexical decision
- (a) The woman greeted the man and smiled.

- (b) The woman greeted by the man smiled.
- ➡ Pros/cons of using this method?

- □ Design
 ⇒ 1 Factor design: Sentence type (i.e., our independent variable)
 - \square 2 *levels*: simple (a) versus complex (b) syntactic analysis
 - (a) The woman greeted the man with a smile.
 - (b) The woman greeted by the man smiled.

Design/materials issues

□ Confounds; length/frequency matching; counterbalancing

P. Knoeferle

10

Cycle of empirical research: example

- □ Method?
 - SPR (see Lecture 2 for example)
 - ⊡ Pro
 - Fairly incremental per-region reading times
 - Cons
 - Only total reading times in a region (i.e., no first-/second-pass, or regression path duration)
 - You only see one region at a time: artificial presentation that does not allow you to re-read earlier text
 - ➡ Eye tracking (see Lecture 2)

Pros

- ➡ Incremental, per-region reading times
- Fine-grained distinctions: first pass, second pass, regression path duration, total times
- ➡ The entire sentence is presented, allowing people to re-read text
- Cons
 - No direct evidence of neural activation

P. Knoeferle

Cycle of empirical research: example

□ Lists for a 1-factor within-subjects design with 2 levels

Item	List 1	List 2	List 3	List 4
1	MC	RR		
2	RR	MC		
3	MC	RR		
4	RR	MC		

P. Knoeferle

13

Building statistical models

- □ Analogy of building a house
 - Collect data about houses, their materials, quality
 - ➡ Use this information to build a model
 - ➡ Model is small-scale version of a real house
 - But try to build the model that best fits the real world based on the available data
 - Should be used to make predictions about the real world
 - ➡ Test model under various conditions
 - Infer from the model about the real-world situation
 - Degree to which a model represents the collected data: fit

Cycle of empirical research: example

- □ Items versus fillers
- Randomize items and fillers
 - S At least 1 filler in between 2 items
 - ➡ Typically at least 3 fillers at the beginning of a lists
 - Seudo randomization, e.g., Latin Square
 - Sometimes even a practice run to illustrate the task/procedure
- □ What your experimental lists looks like depends on your design

P. Knoeferle

14

Building statistical models

Populations and samples

➡ We want our results to apply to the entire *population* of people/things ➡ General/narrow populations

- □ Impossible to access every member of a population
- □ Instead, we collect a *sample*, and use the behavior within the sample to infer from it about the population
- □ Random sampling
 - Each member of a population has an equal chance of being in the sample
- □ Simple statistical model: mean of a list of numbers
 - Sum of all the members of the list / by the number of items in the list
 - Number of programming languages a CL student knows
 - ➡ Five samples: 1, 1, 2, 4, 3 languages; *Mean*: (1+1+2+4+3)/5=2.2

Building statistical models

- Fit between observed data and fitted model
 - ⇒ Deviance between observed data and model $x_1 - \overline{x} = 1 - 2 \cdot 2 = -1 \cdot 2$
 - ⇒ Total error: sum of deviances $\sum (x_i - \bar{x}) = (-1.2) + (-1.2) + (-0.2) + (-1.8) + (0.8) = 0$
- So, no total error?
- $\sum_{i=1}^{n} Sum of squared errors (SS)$ $\sum_{i=1}^{n} (x_i \overline{x}) =$
 - $(-1.2)^{2} + (-1.2)^{2} + (-0.2)^{2} + (1.8)^{2} + (0.8)^{2} =$ 1.44 + 1.44 + 0.04 + 3.24 + 0.64 = 6.8
- ➡ But ...?

P. Knoeferle

17

Why N-1?: Degrees of

freedom

Building statistical models

- Degrees of freedom
 - Solution ⇒ Number of observations that are free to vary
 - Sexample: Number of languages a CL knows
 - □ Sample of four observations from a population: can vary freely
 - □ If we use this sample to calculate standard deviation: we have to use mean of the sample as an estimate of the population mean (i.e., we hold one parameter constant)
 - ⇒ Mean of sample: 4 languages
 - ➡ We assume that population mean is also 4
 - □ If we have four CLs, can all four vary freely?
 - ⇒ Three CLS: 2, 6, 6 languages
 - ⇒ The fourth CL must know 2 language to keep the mean of 4
 - □ The last observation is not free to vary if we hold one parameter constant: df is one less than then number of observations

Building statistical models

P. Knoeferle

18

The s as a measure of fit

			Progra	mming la	nguages	
		1	2	1	4	ŝ
1 -	_					-
2 .	_				-	
3.						
â.,						
	-					_
7 .		_				_
9.			-			

□ Two CLs are rated on their skills in five programming languages

Building a statistical model

The normal distribution

Frequency distribution (histogram) Solution ⇒ X-axis: values of observation Section Se Probability distributions ➡ Idealized version of the frequency distributions E.g., standard normal distribution □ mean=0 $f(X) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(X-\mu)^2/(2\sigma^2)}$ □ s=1 Using distributions to get an idea of the probability that a score occurs with Tables of probabilities for normal distribution

➡ Look up how likely a score is to occur 22

P. Knoeferle

P. Knoeferle

21

Standard normal distribution

- □ Often mean and *s* will not be 0 and 1 respectively (N(0,1))
- To rely on probability with which a score occurs for a sampling distribution
 - ⇒ Use linear transformation to convert other sampling distributions to the standard normal distribution

Z-transformation

□ A further estimate of model-data fit

 \Box Outcome_i = (Model_i) + error_i

Samples: representative of the population?

- □ Standard error (≠ standard deviation)
 - Section 2 Sectio
 - \Box Let population mean μ be 3
 - We cannot obtain data from the entire population
 - But we can draw several samples (e.g., 9) of ratings
 - □ Each sample has a sample mean
 - □ Sampling variation: sample means may differ
 - □ Sampling distribution: centered at population mean (i.e, average of all sample means is 4)
 - ➡ Frequency distribution of sample means from the same population
 - Remember
 - □ Standard deviation measures the error within a sample

P. Knoeferle

25

Samples: representative of the population?

- Sampling distribution tells us about behaviour of samples from population
- □ Average of sample means is population mean
- □ If we know accuracy of that average, then we know how likely it is that a sample is representative of the population
- □ Standard deviation between sample means
 - ➡ Measure of variability in sample means
 - \Rightarrow Standard Error (SE) of the mean $SE = \sum (\overline{X_i} \overline{X})^2$
 - ➡ Too cumbersome in real life, so we rely on approximations
 Divide s by square root of the sample size

 $\sigma_{\overline{x}} = \frac{s}{\sqrt{N}}$

P. Knoeferle

26

Hypothesis testing

- □ Test research hypothesis
 - Set up null hypothesis H0
 - □ Sample came from pop. with mean μ =50
 - Solution of the second sec
 - Solution of the same of the sa
 - \Rightarrow Probability that a sample mean of 55 could reasonably arise if we had drawn in from a population with μ = 50?
 - Sampling distribution can provide the answer
- □ Standard normal distribution (z-transformation)
 - ➡ Determine probability of obtaining a sample mean of 55 (0.3)
 - □ Based on probability, we decide either to reject or fail to reject H0
 - A sample with mean 55 is obtained in 30% of the time from this population, so we don't have good reason to doubt that this sample came from such a population
 We fail to reject H0

Hypothesis testing

- □ Alternative: sample mean is 70
 - Probability of that mean is 0.02 unlikely event that occurs only in 2%
 - ➡ This sample mean came from another pop.
 - ⇒ We reject H0
- Fisher: Confidence level
 - ➡ Tea-cup example
 - ▷ p < 0.05: We are more than 95 % certain that our findings are not the result of chance

Type I and II errors

H1 H0 60. Std. Dev = 1 9.7 1 Mean = 100.0 = 1000.00 COINTOSS

	True state of the world		
Decision	H0 True	H0 False	
Reject H0	Type I error Correct decision		
	ρ= α	p=1-β=Power	
Fail to reject H0	Correct decision	Type II error	
	p=1- α	p =β	

- Deciding which hypothesis
 - ➡ Critical values
 - Values of the variable that describe the boundary of the rejection region(s) (here: 67)
 - ➡ Decision rule □ Reject H0 when result falls in the lowest 5% of distribution (p < 0.05 of coming from the)population, $\mu = 100 \sigma = 20$)
- Type I error
 - \Rightarrow Reject H0 when true (α is the probability of a Type I error)

Type II error

➡ Not rejecting H0 when it is false (β is the prob. of a Type II error)

29

Choosing a statistical test

Choice of inferential & descriptive statistics depends on ⇒ Types of data ⇒ Type of design

P. Knoeferle

30

Type of data

- Qualitative (categorical/frequency/count) data
 - Consist of totals or frequencies for a category (e.g., the number of times people looked at the word kitchen compared with ktchien)
- Quantitative data
 - Result of any sort of measurement (e.g., reading speed, fixation duration)
- More detailed characterization based on level of measurement
 - ➡ 1. Nominal 2. Ordinal 3. Interval 4. Ratio
 - Can be classified according to their informativity from left to right
 - Qualitative data: nominal and ordinal levels
 - Quantitative data: interval and ratio levels

Type of data

- Nominal
 - Unordered set of qualitative values
 - Numbers represent names/categories
 - Descriptive statistics: relative frequencies
 - ➡ Inferential statistics: e.g., chi-square test, log-linear models
- Ordinal (Rank data)
 - Like nominal, but the values have a meaningful ordering □ E.g., "First to last" relationship between values
 - Descriptive statistics: percentiles (One of a set of points on a scale arrived at by dividing a group into parts in order of magnitude)
 - Inferential statistics: non-parametric statistics for ordinal data

Type of data

Type of design

- □ Interval (continuous data)
 - Arbitrary zero point and measuring unit
 - ➡ Possible to determine the relationships between differences in individual observations (intervals)
 - □ For true interval data on a scale from 1-10, the increase from 2 to 3 should be the same as from 9 to 10
 - Descriptive statistics: mean, variance, standard deviation
 - ➡ Inferential statistics: t-test, analysis of variance (ANOVA)
- Ratio
 - Like interval, but in addition has a true zero point
 In addition: on scale from 1-10, 4 is twice as good as 2
 - ➡ Descriptive statistics: central tendency, geometric mean
 - ➡ Inferential statistics: like interval data

P. Knoeferle

33

- 1. Relationships versus differences
 - Differences between two or more groups
 - Relationships between two or more variables
- 2. Number of groups/variables
 - S One
 - ➡ Two or more
- 3. Way of measuring
 - ➡ Dependent
 - Within subjects/items design
 - Independent
 - Between subjects/items design
 - ➡ Mixed
 - Partly between; partly within

P. Knoeferle

34

Type of design

- 1. Relationships versus differences
 - ➡ Relationships
 - Between number of cigarettes smoked per day and scores on a task
 - ➡ Between working memory span and reading times
 - ➡ Differences
 - Between smokers and non-smokers on the same task
 - ➡ For reading times in readers with low compared with readers that have a high working memory span
 - ➡ Reading times for simple main clause compared with reduced relative clause sentences

Type of design

- 2. Number of groups/variables
- One factor
 - B.g., Word order, sentence complexity, grammaticality

Item	Subj 1	Subj 2	Subj 3	Subj4
1	SVO	OVS		
2	OVS	SVO		
3	SVO	OVS		
4	OVS	SVO		

2. Number of groups/variables

Two or more factors

SWORD Order (SVO/OVS) & Ambiguity (amb., unamb.)

Item	Subj 1	Subj 2	Subj 3	Subj4
1	SVOa	OVSa	SVOu	OVSu
2	OVSa	SVOu	OVSu	SVOa
3	SVOu	OVSu	SVOa	OVSa
4	OVSu	SVOa	OVSa	SVOu
5	SVOa	OVSa	SVOu	OVSu

➡ How many items?

P. Knoeferle

37

39

Type of design

- 3. Ways of measuring
 - ⇒ Within-subject design (repeated measures)
 - Designs in which each subject receives all levels of at least on independent variable
 - See Example for "Two or more factors"
 - □ We measure reading times for SVO vs. OVS sentences
 - \rightleftharpoons One subjects receives both SVO and OVS sentences
 - If, e.g., a subject is a weak reader, they will have difficulties reading both SVO and OVS, but more so for OVS

Item	Subj 1	Subj 2	Subj 3	Subj4
1	SVOa	OVSa	SVOu	OVSu
2	OVSa	SVOu	OVSu	SVOa
3	SVOu	OVSu	SVOa	OVSa
4	OVSu	SVOa	OVSa	SVOu
5	SVOa	OVSa	SVO	OVSu

3. Ways of measuring

Between-subject design

- Designs in which different subjects serve under different treatment levels
- Example: Order of presentation (picture-first, picture-last) x Congruence (match, mismatch)

Type of design

- Between: Order of presentation
- Within: Congruence

see Underwood et al., 2004

Item	Subj 1	Subj 2	Subj 3	Subj4
1	Picfirst-m	Picfirst-n	Piclast-m	Piclast-n
2	Picfirst-n	Picfirst-m	Piclast-n	Piclast-m
3	Picfirst-m	Picfirst-n	Piclast-m	Piclast-n
4	Picfirst-n	Picfirst-m	Piclast-n	Piclast-m
5	Picfirst-m	Picfirst-n	Piclast-m	Piclast-n

P. Knoeferle

38

Choice of analysis techniques

P. Knoeferle

Conclusions

- □ Cycle of empirical research: an example
- Building statistical models
- Hypothesis testing
- Choosing a statistical test
- □ Homework: Design an experiment (in writing)
 - ➡ Theory1: There is a processing preference (e.g., subject-first) for both ambiguous and unambiguous sentences
 - ➡ Theory 2: Such a preference exists only for ambiguous sentences
 - Operationalization, hypotheses, design + example sentences, and lists (only the condition coding per list); method
 - □ How many factors?
 - □ Assume 24 items
 - □ How many data points per condition for 1 participant?
 - □ Type of data and analysis?

P. Knoeferle

41