Overview

Introduction to Psycholinguistics

Lecture 11 Language and embodiment

Pia Knoeferle & M. W. Crocker Department of Computational Linguistics Saarland University SS 2006

Re-considering modularity

- Recall: Procedural modularity
 - □ Tanenhaus et al. , Science (1995)
- ➡ The new "frontier": Representational modularity
 - Non-perceptual versus perceptually-related conceptual representations

e.g., Barsalou, 1999

- Neuropsychological evidence
- Behavioural evidence

P. Knoeferle

2

Embodied cognition

- □ Embodied accounts of comprehension have emerged from the more general movement of embodied cognition
- Wikipedia definition of embodiment
 - "Embodiment is the way in which human (or any other animal's) psychology arises from the brain's and body's physiology"
- Approaches towards defining embodied cognition
 - Six views of embodied cognition (Wilson, 2002), e.g.,

Cognition is situated

- Cognitive activity occurs in a real-world environment, and it inherently involves perception and action
- Cognition is for action
 - The mind guides action, and cognitive mechanisms such as perception contribute to situation-appropriate behavior

3

Comparing the embodied approach with the visual-world studies from the last lecture

P. Knoeferle

Procedural versus representational modularity

□ Recall a key finding from visual world studies

Sisual referential context rapidly influences structuring of an utterance

Tanenhaus et al., 1995

Put the apple on the towel in the box.

Similarity

Emphasis on goal-directed action in the environment

➡ Difference

Implications for the time course with which scene information influences syntactic structuring but not necessarily implications for the kinds of representations used for comprehension

Amodal conceptual representations

- The default assumption in theories of conceptual representations has traditionally been that conceptual representations are *amodal* (i.e., non-perceptual)
 - Internal structure does not resemble the perceptual states from which they originate
 - E.g., amodal representation of the colour of an object in the absence of that object is located in a different neural system from the representations of that colour during the process of perception

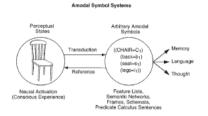


Figure 2. The basic assumption underlying amodal symbol systems: Perceptual states are transduced into a completely new representational system that describes these states amodally. As a result, the internal structure of these symbols is unrelated to the perceptual states that produced them, with conventional associations establishing reference instead.

Fig. from Barsalou, BBS, 1999

P. Knoeferle

5

Perceptual symbol systems

- □ The main goal of Barsalou's 1999 paper is
 - To demonstrate that perceptual symbol systems can achieve what amodal systems can achieve
- □ Some advantages of amodal symbol systems
 - Represent types and tokens
 - Productive combination of symbols to produce infinite number of conceptual structures

Problematic issues with amodal symbol systems

- No account for how perceptual states are converted into amodal symbols
- Difficulty in representing spatio-temporal information
- Empirical evidence against amodal systems
 - □ Damage to visual system disrupts processing of words whose referents are primarily processed visually (e.g., bird)
 - □ We'll hear about some more evidence later in the lecture ...

Perceptual symbol systems

- An alternative approach is a perceptual theory of cognition
 - Conceptual representations rely on perceptual representations, i.e., these representations overlap substantially
- Example
 - Barsalou, 1999: Theoretical framework for the embodiment of knowledge (not primarily language processing!)

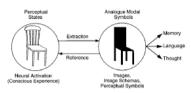


Figure 1. The basic assumption underlying perceptual symbol systems: Subsets of perceptual states in sensory-motor systems are extracted and stored in long-term memory to function as symbols. As a result, the internal structure of these symbols is modal, and they are analogically related to the perceptual states that produced them.

Fig. from Barsalou, BBS, 1999

P. Knoeferle

6

Perceptual symbol systems

- Problematic issues with amodal symbol systems
 - Symbol grounding problem: mapping of symbols back into the world
 - Not clear how amodal symbols get mapped back onto entities in the world
 - ➡ Related: absence of physical referents in most amodal theories makes grounding problematic
 - One solution: associations between amodal symbols and perceptual memories
 - Perception of a dog activates perceptual memories which activate the amodal symbol for dog
 - During symbol grounding the activation of the amodal symbol activates associated perceptual memories which ground comprehension
 - Argument from perceptual side
 - Perceptual symbol systems can do all of this without amodal symbols
- Well, if perceptual symbol systems are that good, why haven't theories traditionally relied on them?

Perceptual symbol systems

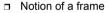
- Barsalou argues that perceptual symbol systems have typically received little support for specific reasons
 - ➡ Perceptual symbol systems typically construed as *recording* systems rather than *conceptual* system

Recording versus conceptual systems

- Recording system only makes a copy of an object
- $\ensuremath{\mathfrak{s}}$ In contrast, conceptual system $\ensuremath{\text{interprets}}$ the entities in a recording
 - □ Example
 Second provide the second provided as instances of the type tree
 - Through binding of perceived tokens to types in long-term memory
- Perceptual theory of knowledge based upon a conceptual system

P. Knoeferle

9

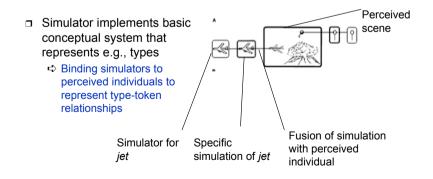

Perceptual symbol systems

- Barsalou 1999 provides a high-level account of how a perceptual symbol system might function
 - Through selective attention, schematic representations of perceptual components extracted from experience and stored in memory (individual experiences of, e.g., purr)
 - Memories of the same component become organized around a common *frame* and implement a simulator
 - A simulator produces limitless simulations of the component (e.g., purr)

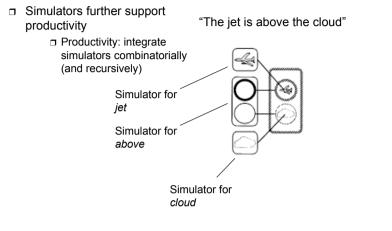
P. Knoeferle

10

Core properties of perceptual symbol systems



- Integrates perceptual symbols across category instances
- Can produce potentially infinite simulations of a category
- Frame + the simulations it produces constitute a simulator
- Notion of a simulator
 - Spatially & temporally organized
 - Spatial: Car from the side/front
 - Temporal: "Accelerating" as a sequence of perceptual records: Press gas pedal, hear engine roar, let up the pedal and hear engine idle
 - Dynamic, i.e, varies with context and experience


More elaborate frame after second instance $t_{\rm out}$ $t_{\rm out}$ $t_{\rm out}$

Initial frame after first instance of a car

Type-token mappings

Combinatorial processes

P. Knoeferle

13

Two hypotheses of action understanding

Action understanding

Sisual hypothesis

- □ Analyse different elements of an action visually
- Does not require motor involvement, and could rely on visual perceptual representations alone

Embodied view: Direct-matching hypothesis

Map visual representations of the observed action onto motor representations of that action

see Rizzolatti et al., 2001

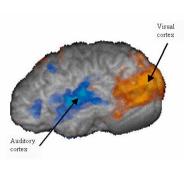
□ Which measure would you chose?

Neuropsychological reality ...

- □ Of a Barsalou-type account?
- If we wanted to test claims that conceptual representations contain aspects of perceptual or motor representations ...
 - ➡ Which two hypotheses could we outline?
- □ Let's first look at **action understanding** (rather than language comprehension)
- Why because those were what the first experiments that tested embodied-cognition claims focused on
- Action understanding
 - Form internal description of an action and use it to organize future behavior

P. Knoeferle

14


Functional magnetic resonance imaging (fMRI)

- Technique for determining which parts of the brain are activated by different types of physical activity
 - ➡ E.g., sight or bodily movement
- Measures increased blood flow to the activated areas of the brain
 - Participant lies in the magnet and, for instance, views pictures
 - ⇒ Then, MRI images of the participant's brain are taken.
 - A first scan is taken as a baseline that is used later as a background for highlighting the brain areas which were activated by the stimulus
 - Sext, a series of further scans are taken during physical activity
 - For some of these scans, the stimulus (e.g., a picture) is presented, and for some of the scans, the stimulus will be absent
 - Comparison of +stimulus and -stimulus scans permit to see which parts of the brain were activated by the stimulus

fMRI

FMRI permit us to identify the brain regions that become more active during the performance of specific tasks

- Example
 - Participants listened to spoken sentences while watching a screen with a flashing checkerboard
 - Onset and offset of sentences differed from those of the flashing picture
 - Time-locked activation in the brain permitted to identify the areas responsible for hearing and vision

http://www.fmrib.ox.ac.uk/fmri_intro/fmri_intro_files/image006.jpg

P. Knoeferle

17

Motor resonance in cognition

- Theories of embodied cognition
 - Perception/understanding of actions involves the mental simulation of the action
- D Neural mechanism that performs simulation-like motor processes?
 - Mirror neurons are neurons that respond both when a particular action is performed and when the same action performed by another individual is observed
 - Mirror neuron system: maps visual information (e.g., from a perceived action) onto its motor representation in the nervous system
 - First found in the premotor cortex of the macaque monkey both when the monkey performed and observed sb. else performing an action
 - □ In the meantime the above finding has been replicated for humans
 - □ Involvement of motor activity has been termed motor resonance

Recall briefly from Lecture 1 ... Cortical lobes

Back

see, e.g., Rizzolatti et al., Nature Reviews Neuroscience, 2001

P. Knoeferle

18

Motor resonance in language comprehension

Tettamanti et al., 2005

19

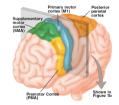
□ Theories of embodied comprehension

Does comprehension of action language involve the mental simulation of actions?

Method

State of the study on 17 healthy, right-handed, native Italian speakers

Task


➡ Passive sentence listening

Materials

- Sentences describing actions performed with the
 - □ Mouth: Mordo la mela"; 'I bite an apple'
 - □ Hand: "Afferro il coltello"; 'I grasp a knife', or
 - □ Leg: "Calcio il pallone"; 'l kick the ball'
- Abstract sentences of comparable syntactic structure as controls
 - "Apprezzo la sincerita"; 'l appreciate sincerity'

http://www.tbts.org/itemDetail.asp?categoryID=295&itemID=16377

- Frontal lobe
 - Separated from parietal lobe by central sulcus/rolandic fissure
 - ➡ Contains Broca's Area

Parietal lobe

- Integrating sensory information
- Manipulation of objects
- ➡ Visuo-spatial processing

Temporal lobe

- Separated of frontal and parietal lobes by the lateral/sylvian fissure
- ➡ Wernicke's area
- Involved in hearing
- Damage can result in problems processing auditory language
- Occipital lobe

fMRI during comprehension of action sentences

Tettamanti et al., 2005

21

- Listening to action-related sentences
- Activates a left fronto-parietotemporal network
- □ Includes amongst other regions
 - ➡ Broca's area
 - Sectors of the premotor cortex where the actions described are motorically coded

Interpretation

P. Knoeferle

 Involvement of visuo-motor circuits (subserve action execution and observation) during comprehension of sentences that describe actions

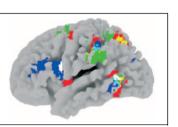


Figure 2. A lateral view of the average anatomical T1 image showing the activations in left inferior parteal and left middle temporal regions found at a lowered statistical threshold, in agreement with the experimental a priori hypothesis (p < .005, uncorrected; see Figure 1 for color codes).

White: action-related effects irrespective of Body parts

Blue: mouth-related Red: hand-related Green: leg-related

fMRI during action observation

- □ To summarize ...
 - Neuronal evidence from a range of studies suggests that the processes underlying perception and action share a common representational framework
- Observers appear to understand the actions of another individual in terms of the same neural coding that they use to produce the same actions

P. Knoeferle

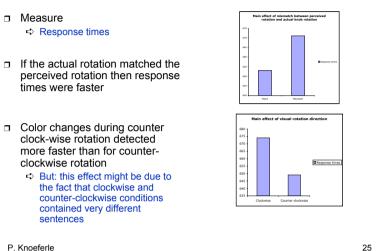
22

Further behavioural findings

□ Participants listened to sentences such as ⇒ "He opened the drawer"

Task

- Sensibility judgments ("Does the sentence make sense?")
- ➡ Response by pressing a button
- The button-pressing movement required either movement toward or away from their body


□ Findings: action compatibility effect

Faster reaction times when behavioral response was in the same direction as the movement implied in the sentence Glenberg & Kaschak, 2002

Motor resonance in action perception

- Zwaan & Taylor, 2006
- Does the percept of visual rotation activate the motor programs that bring about this visual effect?
- If manual rotation affects visual mental rotation
 - Suggests a relation between manual and actual visual rotation
- □ Experiment procedure
 - Subjects observed a rotating black cross on the computer screen
 - Twisted a knob as soon as the cross changed color
- Design
 - Scongruence between manual and visual rotation (match, mismatch)
 - Rotation direction (Clockwise vs. counter-clockwise)

Results

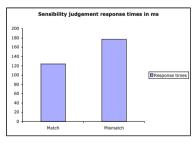
Motor resonance in sentence comprehension

- Does the observation of visual rotation affect the comprehension of sentences expressing a manual-rotation event?
- Example stimuli
 - ➡ Counter clockwise
 - Vincent dimmed the lights.
 - ➡ Clockwise
 - Dennis turned on the lamp.
- Participants made sensibility judgments while concurrently monitoring the rotating cross for color changes
 - Responded to colour changes with space bar
 - Two further buttons pressed to make sensibility judgements
- □ Visual rotation implied in the sentence either matched or mismatched the visual rotation of the cross

P. Knoeferle

26

Results


Significant congruence effect

Comprehension of sentences easier when

concurrent visual stimulus rotated in the same direction as the manual rotation implied by the sentence compared with a stimulus

rotating in the opposite

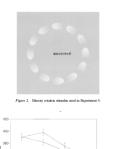
direction

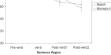
Motor resonance in sentence comprehension

- Evidence for motor resonance as evidenced by sensibility judgments at the end of the sentence
- But when exactly does motor resonance contribute to language comprehension?
 - Contextual information (from preceding linguistic input as well as information from the communicative context) becomes available immediately to the language processing system
 - e.g., Chambers, Tanenhaus, & Magnuson, 2004
 - Alternatively, motor resonance might not occur until the end of the sentence

Motor resonance in language comprehension

Duration of motor resonance?


- "Turned down" in "Eric turned down the volume" triggers motor resonance
- Does this resonance extend throughout reading of the direct object noun phrase?
 - □ It might extend since
 - ➡ End of sentence sensibility judgments have found a motionlanguage comprehension compatibility effect
 - Alternatively it might not last
 - ➡ Effect will be restricted to the verb, given that the noun phrase shifts attention away from the action to the acted-upon object


P. Knoeferle

29

Time-course of motor resonance

- Does concurrent visual rotation produce reading time patterns similar to those for concurrent manual rotation?
- Illusionary rotation stimulus
- Procedure
 - A spacebar press triggered presentation of text blocks
 - Concurrent presentation of illusionary rotation stimulus
- Significant interaction between sentence region and match
 - Reading times for matching sentences < mismatching at verb region
 - No mismatch effects in other regions

Average reading times in ms per sentence region and condition

Time-course of motor resonance

- □ Frame-wise presentation of a
 - sentence
 ⇒ Each frame showed between one and three words
 - Participants were able to move from one frame to the next by rotating a know
 - ➡ 5° of rotation made current frame disappear and a new one appear
 - Sentences described actions involving manual rotation
 - Knob-turning action either matched direction of rotation action in the sentence or not

To/quench/his/thirst/the/marathon/ runner/eagerly/**opened**/the/water bottle,

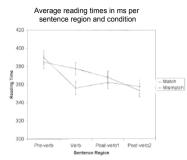


Fig. from Zwaan & Taylor, 2006

P. Knoeferle

30

Summary of the behavioural exps

- Concurrent visual rotation affected manual rotation
 Congruent rotations were easier than incongruent rotations
- Concurrent visual rotation affects the comprehension of sentences about manual rotation
 - Responses were faster when the two rotations were in the same direction than when they were in opposite directions
- Fine-grained online measurements showed that motor resonance had dissipated before the end of the sentence (so maybe only a re-activation that leads to effects in the response times at the end of the sentence)

Conclusions

- Strong evidence for activation of motor representations during both action observation and comprehension
- □ Supports a Barsalou-type account
- □ To be investigated: the extend of motor resonance
- Last reading for this term
 - ➡ Tanenhaus et al. , *Science* (1995) (in the Seminar Ordner, Library)
- Next week
 - ➡ We'll review the course topics and outline which topics will appear on the exam

P. Knoeferle

33