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Simple Recurrent Networks
Until now we’ve consider “Static” models: Map a single, isolated, input to a particular output 

Dynamical Systems: Simple Recurrent Networks 

• Sequential XOR 

• Letter sequences 

• Detecting word boundaries 

• Learning lexical classes 

Acquisition of Syntax

Mapping sentences to meaning, generating sentence from meanings 

Relating SRNs to Surprisal, Neurophysiological measures, and neuroanatomical models
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Training & Performance
The network architecture has 6 input 
and output units, with 20 hidden and  
context units 

Training: 
• Each input vector is presented 
• Trained to predict the next input 
• 200 passes through the sequence 

Tested on another random 
sequence (using same rules) 

Error for part of the test is  
shown in the graph 

• Low error predicting vowels 
• High error on consonants 

But this is the global pattern 
error for the 6 bit vector …

6 units 20 units

6 units

20 units
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Deeper analysis of performance
Can predict which vowel follows a consonant, and how many (?) 

We can examine the error for the individual bits, e.g. [1] and [4]: 

Bit 1, represents the feature Consonant and bit 4 represents High 
• All consonants have the same feature for Consonant, but not for High 

Thus the network has also learned that after the correct number of vowels, it 
expects some consonant: This requires the context units
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Predicting the next sound

High error at the onset of words 

Decreases during a word, as the sequence is increasingly predictable 

High error at word onset demonstrates the network has “discovered” word boundaries
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Structure of Training Environment
Template for sentence generator

Category Examples

NOUN-HUM man,woman

NOUN-ANIM cat,mouse

NOUN-INANIM book,rock

NOUN-AGRESS dragon,monster

NOUN-FRAG glass,plate

NOUN-FOOD cookie,sandwich

VERB-INTRAN think,sleep

VERB-TRAN see,chase

VERB-AGPAT move,break

VERB-PERCEPT smell,see

VERB-DESTROY break,smash

VERB-EAT eat

WORD 1 WORD 2 WORD 3

NOUN-HUM VERB-EAT NOUN-FOOD

NOUN-HUM VERB-PERCEPT NOUN-INANIM

NOUN-HUM VERB-DESTROY NOUN-FRAG

NOUN-HUM VERB-INTRAN

NOUN-HUM VERB-TRAN NOUN-HUM

NOUN-HUM VERB-AGPAT NOUN-ANIM

NOUN-HUM VERB-AGPAT

NOUN-ANIM VERB-EAT NOUN-FOOD

NOUN-ANIM VERB-TRAN NOUN-ANIM

NOUN-ANIM VERB-AGPAT NOUN-INANIM

NOUN-ANIM VERB-AGPAT

NOUN-INANIM VERB-AGPAT

NOUN-AGRESS VERB-DESTROY NOUN-FRAG

NOUN-AGRESS VERB-EAT NOUN-HUM

NOUN-AGRESS VERB-EAT NOUN-ANIM

NOUN-AGRESS VERB-EAT NOUN-FOOD

Categories of exical items
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Input encoding & training
Localist representation  
of each word (31 bits) 
• Nothing of the word 

class is reflected 
10000 random 2-3  
word sentences 
• 27,354 sequence of 

31 bit vectors 
Architecture: 

Trained on 6 complete  
passes through the  
sequence

31 units 150 units

31 units

150 units
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Performance
Training yields an RMS error of 0.88 

RMS error rapidly drops from 15.5 to 1, by simply learning to turn all outputs off (due to 
sparse, localist representations). Careful about looking at RMS alone! 

Prediction is non-deterministic: next input cannot be predicted with absolute certainty, but 
neither is it random 

• Word order and selectional restrictions partially constrain what words are likely to appear next, and 
which cannot appear. 

• We would expect the network to learn the frequency of occurrence of each possible successor, for 
a given input sequence 

Output bit should be activated for all possible following words 
• These output activations should be proportional to frequency 

Evaluation procedure: 
• Compare network output to the vector of probabilities for each possible next word, given the 

current word and context …
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Calculating Performance
Output should be compared to expected frequencies 

Frequencies are determined from the training corpus 
• Each word (winput) in a sentence is compared with all other sentences that are up to that 

point identical (comparison set) 
• Woman smash plate 
• Woman smash glass 
• Woman smash plate 
• … 

• Compute a vector of the probability of occurrence for each following word: this is the 
target, output for a particular input sequence 

• Vector:{0 0 0 p(plate|smash, woman) 0 0 p(glass|smash, woman) 0 … 0 } 
• This is compared to the output vector of the network, when the word smash is presented 

following the word woman. 

When performance is evaluated this way, RMS is 0.053 
• Mean cosine of the angle between output and probability: 0.916 

• This corrects for the fact that the probability vector will necessarily have a magnitude of 1, 
while the output activation vector need not.
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Remarks on performance
Inputs contain no information about form class (orthogonal representations) 
which can be used for making predictions 

• Generalisations about the distribution of form classes, and the composition of those 
classes, must be learned from co-occurrence 

• We might therefore expect these generalisations to be captured by the hidden unit 
activations evoked by each word in its context 

After 6 passes, connection strengths were “frozen” 

The corpus was then presented to the network again: outputs ignored 
• Hidden unit activations for each input + context were saved 

• 27354, 150 bit vectors 
• The hidden unit vectors for each word, in all contexts, were averaged 

• Yielding 29, 150 bit vectors 

The resulting vectors were clustered hierarchically …
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Cluster analysis:
Lexical items with similar 
properties are grouped 
lower in the tree 

The network has discovered: 

• Nouns vs. Verbs 

• Verb subcategorization 

• Animates/inanimates 

• Humans/Animals 

• Foods/Breakables/Objects 

The network discovers  
ordering possibilities for 
various work categories and 
“subcategories”
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Type-Token distinction 
Both symbolic systems and connectionist networks use representations to refer to 
things: 

• Symbolic systems use names 
• Symbols typically refer to well-defined classes or categories of entities 

• Networks use patterns of activations across hidden-units 
• Representations are highly context dependent 

The central role of context in SRNs results in a distinct representation of John, for 
every context in with John occurs (i.e. an infinite number of Johni) 

Claim: contextualised distributed representations provides a solution to the 
representation of type/token differences 

• Distributed representations can learn new concepts as a patterns of activations across a 
fixed number of hidden unit nodes 
• I.e. A fixed number of analogue units can in principle learn an infinite number of concepts 

• Since SRN hidden units encode prior context, the hidden unit can in principle provide an 
infinite memory
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Type/Token continued
In practice the number of concepts and memory is bounded 

• Units are not truly continuous (e.g. numeric precision on the computer) 
• Repeated application of logistic function to the memory results in exponential decay 
• Training environment may not be optimal for exploiting network capacity 
• Actually representational capacity remains an open question 

The SRN representation reflect aspects of word meaning and category 
• Apparent in the similarity structure of the “averaged” internal representation of each 

word: the network’s representation of the word types 

The network also distinguishes between specific occurrences of words 
• The internal representation for each token of a word are very similar 
• But do subtly distinguish between the same word in different contexts 

Thus SRNs provide a potentially interesting account of the type-token 
distinction, differs from the indexing/binding operations of symbol systems
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Hierarchical clustering of specific occurrences of BOY and GIRL

Clustering of word “tokens”

On the Meaning of Words and Dinosaur Bones:
Lexical Knowledge Without a Lexicon

Jeffrey L. Elman

Department of Cognitive Science, University of California, San Diego
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Abstract

Although for many years a sharp distinction has been made in language research between rules
and words—with primary interest on rules—this distinction is now blurred in many theories. If any-
thing, the focus of attention has shifted in recent years in favor of words. Results from many different
areas of language research suggest that the lexicon is representationally rich, that it is the source of
much productive behavior, and that lexically specific information plays a critical and early role in the
interpretation of grammatical structure. But how much information can or should be placed in the
lexicon? This is the question I address here. I review a set of studies whose results indicate that event
knowledge plays a significant role in early stages of sentence processing and structural analysis. This
poses a conundrum for traditional views of the lexicon. Either the lexicon must be expanded to
include factors that do not plausibly seem to belong there; or else virtually all information about word
meaning is removed, leaving the lexicon impoverished. I suggest a third alternative, which provides
a way to account for lexical knowledge without a mental lexicon.

Keywords: Lexical representation; Sentence processing; Dynamical systems; Ambiguity resolution;
Simple recurrent network

For a first approximation, the lexicon is the store of words in long-term memory from which the
grammar constructs phrases and sentences. (p. 130)

[A lexical entry is] lists a small chunk of phonology, a small chunk of syntax, and a small chunk of
semantics. (p. 131)

Ray Jackendoff (2002)

Correspondence should be sent to Jeffrey L. Elman, Department of Cognitive Science, 0526, University of
California, San Diego, La Jolla, CA 92093-0526. E-mail: jelman@ucsd.edu

Cognitive Science 33 (2009) 547–582
Copyright ! 2009 Cognitive Science Society, Inc. All rights reserved.
ISSN: 0364-0213 print / 1551-6709 online
DOI: 10.1111/j.1551-6709.2009.01023.x
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Summary of Elman 1990
Some problems change their nature when expressed as temporally: 

• E.g. sequential XOR developed frequency sensitive units 

Time varying error signal can be a clue to temporal structure: 
• Lower error in prediction suggests structure exists 

Increased sequential dependencies don’t result in worse performance: 
• Longer, more variable sequences were successfully learned 
• Also, the network was able to make partial predictions (e.g. “consonant”) 

The representation of time and memory is task dependent: 
• Networks intermix immediate task, with performing a task over time 
• No explicit representation of time: rather “processing in context” 
• Memory is bound up inextricably with the processing mechanisms 

Representation need not be flat, atomistic or unstructured: 
• Sequential inputs give rise to “hierarchical” internal representations 

“SRNs can discover rich representations implicit in many tasks, 
including structure which unfolds over time”
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Challenges for a connectionist account
What is the nature of connectionist linguistic representations? 

• Localist representations seem too limited (fixed and simplistic) 
• Distributed have greater capacity, can be learned, are poorly understood 

How can complex structural relationships such as constituency be represented? 
Consider “noun” versus “subject” versus “role”: 

• The boy broke the window 
• The rock broke the window 
• The window broke 

How can “open-ended” language be accommodated by a fixed resource system? 
• Especially problematic for localist representations 

In a famous article, Fodor & Pylyshyn argue that connectionist models: 
• Cannot account for the fully compositional structure/nature of language 
• Cannot provide for the open-ended generative capacity, or systematicity
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Learning Linguistic Structure
Construct a language, generated by a grammar which enforces diverse 
linguistic constraints: 

• Subcategorisation 
• Recursive embedding 
• Long-distance dependencies 

Training the network: 
• Prediction task 
• Is structuring of the training data/procedure necessary? 

 Assess the performance: 
• Evaluation of predictions (as in Elman 1990), not RMS error 
• Cluster analysis? Only reveals similarity of words, not the dynamics of processing 
• Principle component analysis: the role of specific hidden units
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Learning Constituency: Elman (1991)
So far, we have seen how SRNs can 
find structure in sequences 

How can complex structural relationships 
such as constituency be represented? 

The Stimuli: 
• Lexicon of 23 items 
• Encoded orthogonally, in 26 bit vector 
Grammar: 
• S ! NP VP “.” 
• NP ! PropN | N | N RC 
• VP ! V (NP) 
• RC ! who NP VP |who VP (NP) 
• N ! boy | girl | cat | dog | boys | girls | cats | dogs 
• PropN ! John | Mary 
• V ! chase | feed | see | hear | walk |live | chases | feeds | sees | hears | walks | lives 
• Number agreement, verb argument patterns

10 units 70 units

10 units

70 units

26 units

26 units
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Training
Verb subcategorization  

• Transitives: hit, feed 
• Optional transitives: see, hear 
• Intransitives: walk, live 

Interaction with relative clauses: 
• Dog who chases cat sees girl 

• Dog who cat chases sees girl 

• Agreement can span arbitrary distance 
• Subcategorization doesn’t always hold (locally)  

Recursion: Boys who girls who dogs chase see hear 

Viable sentences: where should end of sentence occur? 
• Boys see (.) dogs (.) who see (.) girls (.) who hear (.) . 

Words are not explicitly encoded for number, subcat, or category
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Training: Starting Small
At any given point, the training set contained 10000 sentences, which were presented to 
the network 5 times 

The composition of sentences varied over time: 
• Phase 1: Only simple sentences (no relative clauses) 

• 34,605 words forming 10000 sentences 
• Phase 2: 25% complex and 75% simple 

• Sentence length from 3-13 words, mean: 3.92 
• Phase 3: 50/50, mean sentence length 4.38 
• Phase 4: 75% complex, 25% simple, max: 16, mean: 6 

WHY?: Pilot simulations showed the network was unable to learn successfully when given 
the full range of complex data from the beginning. 

Focussing on simpler data first, the network learned quickly, and was then able to learn 
the more complex patterns. 

Earlier simple learning, usefully constrained later learning
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Performance
Weights are frozen and test on a novel set of data (as in phase 4). 

Since the solution is non-deterministic, the networks outputs were compared the context dependent 
likelihood vector of all words following the current input (as done in the previous simulation) 

• Error was 0.177, mean cosine: 0.852 
• High level of performance in prediction 

Performance on Specific Inputs 

Simple agreement:       BOY ..                                   BOYS ..
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Subcategorization
Intransitive: “Boy lives …” 
• Must be a sentence, period  

expected 

Optional: “Boy sees …” 
• Can be followed by either a period, 
• Or some NP 

Transitive: “Boy chases …” 
• Requires some object
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Processing complex sentences
“Boys who mary chases feed cats” 
• Long distance  

• Agreement: Boys … feed 
• Subcategorization: chases is transitive but in a relative clause 
• Sentence end:all outstanding “expectations” must be resolved
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Prediction reconsidered

SRNs are trained on the prediction task: 
• “Self-supervised learning”: no other teacher required 

Prediction forces the network to discover regularities in the temporal order of 
the input 

Validity of the prediction task: 
• It is clearly not the “goal” of linguistic competence 
• But there is evidence that people can/do make predictions 
• Violated expectation results in distinct patterns of brain activity (ERPs) 

If children do make predictions, which are then falsified, this might constitute 
an indirect form of negative evidence, required for language learning.
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Results
Learning was only possible when the network was forced to begin with 
simpler input 

• Restricted the range of data the networks were exposed to during initial learning 
• Contrasts with other results showing the entire dataset is necessary to avoid getting 

stuck in local minima (e.g. XOR) 

This behaviour partially resembles that of children: 
• Children do not begin by mastering language in all its complexity 
• They begin with simplest structures, incrementally building their “grammar” 

But the simulation achieves this by manipulation the environment: 
• Does not seem an accurate model of the situation in which children learn language 
• While adults do modify their speech, it is not clear they make grammatical 

modifications 
• Children hear all exemplars of language from the beginning 
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General results
Limitations of the simulations/results: 

• Memory capacity remains un-probed 
• Generalisation is not really tested 

• Can the network inferentially extend what is know about the types of NPs learned to NPs with 
different structures 

• Truly a “toy” in terms of real linguistic complexity and subtlety 
• E.g. lexical ambiguity, verb-argument structures, structural complexity and constraints 

Successes 
• Representations are distributed, which means less rigid resource bounds 
• Context sensitivity, but can respond to contexts which are more  “abstractly” defined 

• Thus can exhibit more general, abstract behaviour 
• Symbolic models are primarily context insensitive 

Connectionist models begin with local, context sensitive observations 

Symbolic models begin with generalisation and abstractions
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A Second Simulation
While it’s not the case that the environment changes, it true that the child 
changes during the language acquisition period 

Solution:  keep the environment constant, but allow the network to undergo 
change during learning 

Incremental memory: 
• Evidence of a gradual increase in memory and attention span in children 
• In the SRN, memory is supplied by the “context” units 
• Memory can be explicitly limited by depriving the network, periodically, access to 

this feedback 

In a second simulation, training began with limited memory span which was 
gradually increased: 

• Train began from the outset with the full “adult” language (which was previously 
unlearnable)
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Training with Incremental Memory
Phase 1: 

• Training on corpus generated from the entire grammar 
• Recurrent feedback was eliminated after every 3 or 4 words, by setting all context units to 0.5 
• Longer training phase (12 epochs, rather than 5) 

Phase 2: 
• New corpus (to avoid memorization) 
• Memory window increased to 4-5 words 
• 5 epochs 

Phase 3: 5-6 word window 

Phase 4: 6-7 word window 

Phase 5: no explicit memory limitation implemented 

Performance: as good as on the previous simulation 
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Analysing the solution

Hidden units permit the network to derive a functionally-based 
representation, in contrast to a form-based representation of inputs 

Various dimensions of the internal representation were used for: 
• Individual words, category, number, grammatical role, level of embedding, and 

verb argument type 
• The high-dimensionality of the hidden unit vectors (70 in this simulation) makes 

direct inspection difficult 

Solution: Principle Component Analysis can be used to identify which 
dimensions of the internal state represent these different factors 

• This allows us to visualise the movement of the network through a state space for a 
particular factor, by discovering which units are relevant
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Principle Component Analysis
Suppose we’re interested in analysing a network with 3 hidden units and 4 patterns of activation, 
corresponding to: boysubj, girlsubj, boyobj, girlobj 
Cluster analysis might reveal the following structure: 
• But nothing of the subj/obj representation is revealed 
If we look at the entire space, however, we can 
get more information about the representations: 

Since visualising more than 3 dimensions is difficult, PCA permits us to identify which “units” 
account for most of the variation. 
• Reveals partially “localist” representations in the “distributed” hidden units
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Examples of Principle Components: 1
Agreement 

• Boy who boys chase chases boy 
• Boys who boys chase chase boy 

The 2nd PCA encodes agreement  
in the main clause
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Examples of Principle Components: 2
Transitivity 

• Boy chases boy 
• Boy sees boy 
• Boy walks 

Two principle components: 1 & 3 

PCA 1: 
• Nouns on the right 
• Verbs left 

PCA 2: 
• Intrans: low 
• Optional trans: mid 
• Transitive: high
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Examples of Principle Components: 3

Right embedding: 
• Boy chases boy 
• Boy who chases boy 

chases boy 
• Boy chases boy who 

chases boy 
• Boy chases boy who chases 

boy who chases boy 

PCA 11 and 1: 
• “Embedded clause are  

shifted to the left” 
• “RCs appear nearer the  

noun they modify” 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PCA analysis of “Starting Small”
We can use “Principle Component Analysis” to examine particularly important dimensions of the 
networks solutions more globally: 

• Sample of the points visited in the hidden unit space as the network processes 1000 random sentences 

The results of PCA after training: 

   Training on the full data set                                              Incremental training 

The right plot reveals are more clearly “organised” use of the state space
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Comments
To solve the task, the network must learn the sources of variance (number, category, verb-
type, and embedding)  

If the network is presented with the complete corpus from the start: 
• The complex interaction of these factors, long-distance dependencies, makes discovering the 

sources of variance difficult 
• The resulting solution is imperfect, and internal representation don’t reflect the true sources of 

variance 

When incremental learning takes place (in either form): 
• The network begins with exposure to only some of the data 

• Limited environment: simple sentences only 
• Limited mechanisms: simple sentences + noise (hence longer training) 

• Only the first 3 sources of variance, and no long-distance dependencies 

Subsequent learning is constrained (or guided) by the early learning of, and commitment to, 
these basic grammatical factors 

• Thus initial memory limitations permit the network to focus on learning the subset of facts which lay 
the foundation for future success
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The importance of starting small
Networks rely on the representativeness of the training set: 

• Small samples may not provide sufficient evidence for generalisation 
• Possibly poor estimates of the populations statistics 
• Some generalisations may be possible from a small sample, but are later ruled out 

• Early in training the sample is necessarily small 
The representation of experience: 
• Exemplar-based learning models store all prior experience, and such early data can then 

be re-accessed to subsequently help form new hypotheses 
• SRNs do not do this: each input has it’s relatively minor effect on changing the weights 

(towards a solution), and then disappears. Persistence is only in the change made to the 
network. 

Constraints on new hypotheses, and continuity of search: 
• Changes in a symbolic systems may lead to suddenly different solutions 

• This is often ok, if it can be checked against the prior experience 
• Gradient descent learning makes it difficult for a network to make dramatic changes in its 

solution: search is continuous, along the error surface 
• Once committed to an erroneous generalisation, the network might not escape from a local 

minima
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Starting small (continued)

Network are most sensitive during the early period of learning: 
• Non-linearity (the logistic activation function) means that weight modifications are 

less likely as learning progresses 
• Input is “squashed” to a value between 0 and 1 
• Non-linearity means that the function is most sensitive for inputs around 0 (output is 0.5) 
• Nodes are typically initialised randomly about 0, so netinput is also near 0 
• Thus the network is highly sensitive 

• Sigmoid function become “saturated” for large +/- inputs 
• As learning proceeds units accrue activation 
• Weight change is a function of the error and slope of the activation function 
• This will become smaller as units activations become saturation, regardless of how 

large the error is 
• Thus escaping from local minima becomes increasingly difficult 

Thus most learning occurs when information is least reliable
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Conclusions

Learning language is difficult because: 
• Learning linguistic primitives is obscured by the full complexity of grammatical 

structure 
• Learning complex structure is difficult because the network lacks knowledge of the 

basic primitive representations  

Incremental learning shows how a system can learn a complex system by 
having better initial data: 

• Initially impoverished memory provides a natural filter for complex structures early 
in learning so the network can learn the basic forms of linguistic regularities 

• As the memory is expanded, the network can use what it knows to handle 
increasingly complex inputs 

• Noise, present in the early data, tends to keep the network in a state of flux, helping 
it to avoid committing to false generalisations
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Rohde & Plaut (1999)
Model: Predict next word of a sentence 

• Simulation 1: Significant advantage for starting with the full language; even more 
so if languages were made more natural by increasing the number of clauses 
obeying semantic constraints 

• Simulation 2: Failure to replicate starting small advantage even with Elman's 
parameters and initial weights; instead advantage for full language 

• Simulation 3: Limited memory failed to provide an advantage over full memory 
even with increased training time---however, limited memory was generally less of 
a hindrance than simplified input 

Limitation: Syntactic prediction is not comprehension! 

Conclusion: Simulations call into the question the proposal that limited cognitive 
resources are necessary, or even beneficial for language acquisition.
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Summary of SRNs …
Finding structure in time/sequences: 

• Learns dependencies spanning more than a single transition 
• Learns dependencies of variable length 
• Learns to make partial predictions from structure input 

• Prediction of consonants, or particular lexical classes 

Learning from various input encodings: 
• Localist encoding: XOR and 1 bit per word 
• Distributed: 

• Structured: letter sequences where consonants have a distinguished feature 
• Random: words mapped to random 5 bit sequence 

Learns both general categories (types) and specific behaviours (tokens) based purely on distributional 
evidence in the linguistic signal 

Able to learn complex syntactic constraints, such as agreement, subcategorisation, and embeddings 

What are the limitations of SRNs 
• Do they simply learn co-occurrences and contingent probabilities? 
• Can they learn more complex aspects of linguistic structure? 
• Are they as successful for comprehension, as they are for prediction?


