Reading Aloud

• **Task**: produce correct pronunciation for a word, given its printed form

• Suited to connectionist modeling:

 • Need to learn mappings from one domain (orthography) to another (sound)

 • Multi-layer networks are good at this, even when mappings are arbitrary

 • Human learning is similar to network learning:

 • i.e. learning takes place gradually over time

 • Incorrect attempts are often corrected

 • If a network can’t model this linguistic task successfully, it would be a serious blow to connectionist modeling. But …
Dual Route Model

- The standard model of reading posits two independent routes leading to pronunciation of a word, because …

 - People can easily pronounce words they have never seen:
 - SLINT or MAVE

 - People can pronounce words which break the “rules”:
 - PINT or HAVE

- One mechanism uses general rules for pronunciation

- The other mechanism stores pronunciation information with specific words

Evidence for Dual-Route Model

- Evidence from neuropsychology shows different patterns of behaviour for two types of brain damage that are acquired after learning

 - Phonological dyslexia
 - **Symptom**: Read words without difficulty, but cannot produce pronunciations for non-words
 - **Explanation**: Damage to rule-based route; lexical route intact

 - Surface dyslexia:
 - **Symptom**: Can pronounce words and non-words correctly, but tend to regularise irregulars
 - **Explanation**: Damage to the lexical route; rule-based route intact

 - All Dual-Route models share:
 - A lexicon for known words, with specific pronunciation information
 - A rule mechanism for the pronunciation of unknown words
Improving S&M Model: Plaut et al

 - Monosyllabic word = onset + vowel + coda
 - Strong constraints on order within these clusters:
 - E.g., if 't' and 's' are together, 's' always precedes 't'
 - Only one set of grapheme-to-phoneme units is required for the letters in each group
 - Correspondences can be pooled across different words, even when letters appear in different positions

The network architecture

- The architecture of the Plaut et al network:
 - There are a total 105 possible orthographic onsets, vowels, and codas
 - There are 61 possible phonological onsets, vowels, and codas
- Performance of the Plaut et al model:
 - Succeeds in learning both regular and exception words
 - Produces the frequency x regularity interaction
 - Demonstrates the influences of frequency and neighbourhood size
- What is the performance on non-words?
 - For consistent words (HEAN/DEAN): model (98%) versus human (94%)
 - For inconsistent words (HEAF/DEAF/LEAF): model (72%), human (78%)
 - This reflects production of regular forms: both human & model produced both
 - Highlights the importance of encoding … how much knowledge is implicit in the coding scheme
Summary

- Seidenberg & McClelland trained based on the log frequencies of words
 - People learn from absolute frequencies which: low frequency items too rare?
 - Plaut *et al* model, however, succeeds with absolute frequencies
- The right encoding scheme is essential for modeling the findings
 - How much linguistic knowledge is “given” to the network by Plaut’s encoding?
 - They assume this knowledge could be partially acquired prior to reading
 - I.e. children learn to pronounce “talk” before they can read it
 - Doesn’t scale to polysyllabic words
- Does not explain the double dissociation:
 - ✔ Surface dyslexics (can read exceptions, but not non-words)
 - ❌ Phonological (can pronounce non-words, but not irregulars)

Connectionist models of Acquisition

- Symbolic models emphasise the learning of rules and exceptions
- Connectionist models have no direct correlate to such mechanisms
 - Knowledge is stored in a distributed weight matrix, learned from experience
- Models of learning:
 - Start state of the cognitive system
 - Learning mechanism
 - Training environment
 - Acquired skill
- Connectionist models provide an opportunity to model the learning process itself, not just the resulting acquired skill
 - We can test connectionist models against developmental data, at various points during learning
 - Discontinuities in performance (sudden changes in behaviour) can be explained by “emergent properties” of a single, continuous mechanism
Learning the Past Tense

• The problem of past tense formation:
 • Regular formation: stem + ‘ed’
 • Irregulars do show some patterns:
 • No-change: hit → hit (all end in a ‘t’ or ‘d’)
 • Vowel-change: ring → rang,. Sing → sang (rhymes often share vowel-change)
 • Arbitrary: go → went

• Young children often form the past tense of irregular verbs (like GO) by adding ED: overregularisations
 • “go”+”ed” → “goed”

• This suggests incorrect application of a learned rule, not just rote learning or imitation

• Overregularisations often occur after the child has already succeeded in producing the correct irregular form: “went”

• Thus we need to explain this “U-shaped” learning curve

A Symbolic Account: Dual-Route Model

• General pattern of behaviour:
 • Early: children learn past tenses by rote (forms are stored in memory)
 • Later: recognise regularities, add general device to add ‘ed’ suffix
 • Now: no need to memorise forms, but this leads to incorrect generalisation of the regular rule to irregulars
 • Finally: distinguish which forms can be generated by the rule, and which must be stored (and accessed) as exceptions

• A Dual Route Model:
 • Errors result during the transition from rote learning to rule-governed
 • Recovery occurs after sufficient exposure to irregulars:
 • Increased “strength”
 • Frequency based
 • Faster recovery for frequent irregulars

Output past tense

Blocking

List of exceptions (Associative memory)

Input stem

Regular route (Rule based)
The Dual-Route Model

- As with reading aloud, this proposal requires two qualitatively different types of mechanism
- Accounts for the observed dissociation:
 - Children make mistakes on irregulars only
- Evidence for double dissociation (Pinker 1994)
 - In some language disorders, children preserve performance on irregulars but not regulars
 - In other disorders, the opposite pattern is observed
- Accounts for the U-shaped learning curve
 - And since irregulars differ in "representational strength" it explains why overregularisation of high frequency irregulars is uncommon
- No explicit account of how the "+ed" rule is learned

Language Acquisition

- Perhaps the notion of inflection is innately specified, and need not itself be learned:
 - The inflectional mechanism is triggered by the environment or maturation
 - Then the exact (language specific) manifestation must be learned
- Criticisms:
 - Early learning tends to be focussed on irregular verbs
 - Irregular sub-classes (hit, sing, ring) might lead to incorrect rule learning
 - Do occur, but typically late in learning
 - How are good/spurious rules distinguished and selected
 - English is unusual in possessing a large class of regular verbs
 - Only 180 irregulars
 - Only 20% of plurals in Arabic are regular
 - Norwegian has 2 regular forms for verbs: 3 route model?
Towards a Connectionist Model

- No distinct mechanisms for regular and irregular forms
- No innately specified maturation stage or rules to be triggered
- Parsimonious:
 - Simplifies the structural complexity of the starting state
 - Learning exploits the structure of the learning environment
- Rummelhart and McClelland (1986)
 - 1st attempt to model this problem (or any development system)
 - Modelled U-shaped learning, but heavily criticised (Pinker & Prince 1988)
- Plunkett & Marchman
 - Use a feed-forward network, one hidden layer

Rummelhart and McClelland (1986)

- A single-layer feed-forward network (perceptron)
 - Input: is a phonological representation of the stem (wickelfeatures)
 - Output: is a phonological representation of the past tense (wickelfeatures)
 - Trained using the perceptron learning rule

- Training:
 - First trained on 10 high frequency verbs (8 irregular, 2 regular), 10 epochs
 - Perfect performance
 - Then 420 (medium frequency) verbs (80% regular), 190 epochs
 - Early in training, shows tendency to overregularise, i.e. modelling stage 2
 - End of training, exhibits “adult” (near perfect) performance
 - Generalised reasonably well to 86 low frequency verbs in test set
Performance of R&M (1986)

- Criticisms:
 - Problems with representation using wickelphones/wickelfeatures
 - U-shape performance depends on sudden changes from 10-420 in the training regime
 - Rote learning of first 10 verbs: there was no generalisation to novel stems after 10 epochs
 - Most of the 410 new verbs are regular, overwhelming the network and leading to overregularisation

- Justification: children do exhibit vocabulary spurt at end of year 2
 - But overregularisation errors typically occur at end of year 3
 - Vocabulary spurt is mostly due to nouns

- Single layer Perceptron only works for linearly separable problems
 - Plunkett & Marchman (1991) show residual error remains after extensive training
 - Suggests a hidden-layer network

Plunkett and Marchman (1993)

- A standard feed forward network with one hidden layer

- Maps a phonological representation of the stem to a phonological representation of the past tense

- Initially, the model is trained to learn the past tense of 10 regular and 10 irregular verbs
 - Represents current estimates of children’s early vocabulary

- Training proceeds using the standard backprop algorithm, in response to error between actual and desired output
 - Is this plausible?

- Learning must configure the network for both regulars and irregulars
 - Consider: hit » hit, but pit » pitted
 - We know multi-layer networks can do this, but considerable training may be required
Plunkett and Marchman (continued)

- Training:
 - Initial period of 10 regular and 10 irregular verbs
 - Then vocabulary was gradually increased, to mimic the gradual uptake of words in children
 - Total: 500 word stems, 90% regular (similar to the relative frequency of regulars in English)
 - Higher frequency verbs were introduced earlier in training, and so were also presented to the network more often
 - Irregulars are more frequent, so appear more often in training
 - This is essential, otherwise the regulars swamp the network
 - Arguably more accurately reflects the child’s learning environment
 - The final model successfully learned the 500 verbs in the training set
 - But errors were made during the learning phase
 - Caused by interference between mappings for regulars and irregulars before mature connection weights have been discovered

Performance of P&M

- Early acquisition is characterised by a period of error free performance
- Low overall rate (5-10%) of overregularisation errors
- Overregularisation is not restricted to a particular period of development
- Common irregulars do not exhibit overregularisation (e.g. ‘goed’ is rare)
- Errors are phonologically conditioned: No change verbs (hit) are robust to overregularisation (e.g. ‘hitted’ is rare)
- Only a very small number of irregularisation errors are observed (e.g. where the network produces ‘bat’ for ‘bite’)

- Generally compatible with the results of studies by Marcus et al. (1992):
 - Early performance is error free, and then low error is more or less random
Discussion

- Performance is closely tied to the training environment:
 - Onset of overregularisation is closely bound to a “critical mass” of regular verbs entering the child vocabulary
 - This subsides as the training learns the final solution for the task

- Highly sensitive to training environment:
 - Requires more training on arbitrary irregulars (go/went), which are highly frequent in the language
 - More robust for no-change verbs (hit, put) which are more numerous (type) and less frequent (token)

- Models the frequency x regularity interaction:
 - Faster reaction time for high frequency irregulars than low frequency ones
 - No advantage for regulars

- Differential behaviour for regulars and irregulars result from lesioning

- Suggests it is dangerous to infer dissociations in mechanisms due to observed dissociations in behaviour
 - Critical mass effect can have the appearance of a distinct mechanism

Criticism

- We know multi-layered networks can learn such mappings in general; not proof that children use the same type of mechanism

- Pinker & Prasada argue that the (idiosyncratic) statistical properties of English help the model:
 - Regulars have low token frequency but high type frequency: facilitates the generalisation across this class of items
 - Irregulars have low type frequency but high token frequency: facilitates rote learning mechanism for these words

- They argue no connectionist model can accommodate default generalisation for a class which has both low type and token frequency
 - “Default” inflection of plural nouns in German appear to have this property

- No explanation of the double-dissociation observed by Pinker (1994)
Main conclusions

- Dissociations in performance, do not necessarily entail distinct mechanisms:
 - Reading aloud: a single mechanism explains regular and irregular pronunciation of monosyllabic rules
 - Past tense: a single model of regular and irregular past tense formation

- But, explaining **double dissociations** is difficult
 - Has been shown to be possible in small networks, but unclear if larger (more plausible) networks can demonstrate double dissociations

- Connectionist models excel at finding structure and patterns in the environment: “statistical inference machines”
 - The start state for learning may be relatively simple, unspecified
 - Necessary constraints to aid learning come from the environment

- Can such models scale up? Are they successful for languages with different distributional properties?

- Tutorial: The English Past Tense, chapter 11 of Plunkett & Elman

Simple Recurrent Networks

- Until now we’ve consider “Static” models: Map a single, isolated, input to a particular output

- Dynamical Systems: Simple Recurrent Networks
 - **Sequential XOR**
 - Letter sequences
 - Detecting word boundaries
 - Learning lexical classes
 - Acquisition of Syntax
 - Mapping sentences to meaning, generating sentence from meanings
 - Relating SRNs to Surprisal, Neurophysiological measures, and neuroanatomical models
Representing Time

- Many cognitive functions involve processing sequences of inputs/outputs over time:
 - Sequences of motor movements
 - Sequences of sounds to produce a particular word
 - Sequences of words encountered incrementally in a sentence

- We can directly represent time as “order” in the input pattern vector
 - Assumes buffering of events before processing, and processing takes place all at once (i.e. in parallel)
 - Maximum sequence length (duration) is fixed
 - Does not easily distinguish relative versus absolute temporal position, e.g.
 - 0 1 1 1 0 0 0 0 0
 - 0 0 0 1 1 1 0 0 0
 - Similar patterns are spatially distant (and learning such translational variance requires an external teacher)

- We need a richer, more general representation of time

Recurrent networks

- Suppose we want a network to generate a sequence of outputs:
 - E.g.: AAAB

- Consider the following network:
 - Inputs are linear, rest are binary threshold units:
 - Positive = 1
 - Negative = 0
 - Let A = 1 1; B = 0 0
 - The neg. bias of the hidden node keeps activity from being propagated during first cycles

<table>
<thead>
<tr>
<th>Time</th>
<th>Input 1</th>
<th>Input 2</th>
<th>Hidden</th>
<th>Output 1</th>
<th>Output 2</th>
<th>Resp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In</td>
<td>Out</td>
<td>In</td>
<td>Out</td>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>1</td>
<td>0+0</td>
<td>0</td>
<td>0+0</td>
<td>0</td>
<td>0-3.5</td>
<td>0+1</td>
</tr>
<tr>
<td>2</td>
<td>1+0</td>
<td>1</td>
<td>1+0</td>
<td>1</td>
<td>2-3.5</td>
<td>0+1</td>
</tr>
<tr>
<td>3</td>
<td>1+.5</td>
<td>1.5</td>
<td>1+.5</td>
<td>1.5</td>
<td>3-3.5</td>
<td>0+1</td>
</tr>
<tr>
<td>4</td>
<td>1+.75</td>
<td>1.75</td>
<td>1+.75</td>
<td>1.75</td>
<td>3.5-3.5</td>
<td>-2+1</td>
</tr>
</tbody>
</table>

Connectionist Language Processing – Crocker & Brouwer
Recurrent networks with state units

- We can add inputs to the recurrent network which modulate the effect of the state units:
 - These inputs are called “plan” units

![Diagram of recurrent network with state units](image)

- In this way inputting (0 1) results in AAAB, while inputting (1 0) results in AB

Attractors

- Some recurrent networks change over time such that the output settles into a particular state: Attractor networks
 - The set of possible states are the attractors

- Ability to model reaction times, robust to noisy input

- Can perform an arbitrary mapping from input to output
Simple Recurrent Networks

- Recurrent networks are powerful for executing and learning complex sequences, but difficult to design

- Simple recurrent networks can learn any sequence given as input

- We can tell they’ve learned by training them to predict the next item

- Hidden units are connected to “context” units:
 - These correspond to “state” units: they remember the state of the network on the previous time step
 - The hidden units are able to recycle information over multiple time steps
 - Dynamic memory: Identical inputs can be treated differently depending on context

SRNs

- Context units are direct copies of hidden units, the connections are not modifiable
 - Connections are one-to-one
 - Weights are fixed at 1.0

- Connections from context units to hidden units are modifiable; weights are learned just like all other connections
 - Training is done via the back-propagation learning algorithm

- Solution: let time be represented by its affect on processing
 - Dynamic properties which are responsive to temporal sequences
 - Memory

- Dynamical systems: “any system whose behaviour at one point in time depends in some way on its state at an earlier point in time”
 - See: *Rethinking Innateness*, Chapter 4.
Temporal XOR

- We know that XOR cannot be learned by a simple 2-layer network

- We can translate it into a “temporal” task by presenting input/output sequences:
 - Input: 1 0 1 0 0 0 1 1 1 0 1 0 1 ...
 - Output: 0 1 0 0 0 1 1 1 0 1 0 1 ? ...

- Training:
 - Construct a sequence of 3000 bits
 - 600 passes
 - Predict the next bit in the sequence
 - Prediction is based on both the current input and the network’s previous state

Observations of XOR

- The network successfully predicts every third bit:
 - Correct, since other bits are random
 - Note: actually attempts to apply the XOR rule for each input bit

- The networks solution:
 - At the hidden layer, 1 unit is active when the input contains a sequence of identical elements
 - The other unit is active when input elements alternate
 - Thus the network has become sensitive to high/low “frequency”
 - This is different from the static solution to the problem

- Note: the prediction task is analogous to autoassociation
 - Instead of exploiting redundancy in patterns, it must discover the temporal structure of the input

“Finding Structure in Time”