Reading Aloud

- **Task:** produce correct pronunciation for a word, given its printed form

- Suited to connectionist modeling:
 - Need to learn mappings from one domain (orthography) to another (sound)
 - Multi-layer networks are good at this, even when mappings are arbitrary
 - Human learning is similar to network learning:
 - i.e. learning takes place gradually over time
 - Incorrect attempts are often corrected

- If a network can’t model this linguistic task successfully, it would be a serious blow to connectionist modeling. But …
Dual Route Model

- The standard model of reading posits two independent routes leading to pronunciation of a word, because …

 - People can easily pronounce words they have never seen:

 - SLINT or MAVE

 - People can pronounce words which break the “rules”:

 - PINT or HAVE

 - One mechanism uses general rules for pronunciation

 - The other mechanism stores pronunciation information with specific words

Evidence for Dual-Route Model

- Evidence from neuropsychology shows different patterns of behaviour for two types of brain damage that are acquired after learning

 - Phonological dyslexia

 - **Symptom**: Read words without difficulty, but cannot produce pronunciations for non-words

 - **Explanation**: Damage to rule-based route; lexical route intact

 - Surface dyslexia:

 - **Symptom**: Can pronounce words and non-words correctly, but tend to regularise irregulars

 - **Explanation**: Damage to the lexical route; rule-based route intact

 - All Dual-Route models share:

 - A lexicon for known words, with specific pronunciation information

 - A rule mechanism for the pronunciation of unknown words
Seidenberg & McClelland (1989)

- Network behaviour is a function of experience
- Reflects previous experience on a particular word
- Experience with words resembling that string
- Experience with HAVE overcomes the fact that _AVE is usually a long vowel
- Can produce a pronunciation for MAVE, but error is introduced by words like HAVE
- Performance: 97% accuracy on pronouncing learned words
 - Models: frequency & interaction with regularity, neighborhood, consistency
- Reading non-words (model gets 60%, humans 90%)
- Lexical decision (FRAME is a word, but FRANE is not)

Connections

460 phonological units
400 orthographic units
200 hidden units

Representations are important

- **Position specific** for inputting words of maximum length N: N groups of 26 binary inputs = word
- But consider: LOG, GLAD, SPLIT, GRILL, CRAWL
 - The model needs to learn mapping between L and /l/, for L in different positions
 - Learning pronunciations for different positions should be straightforward
 - Alignment: letters and phonemes are not in 1-to-1 correspondence
- **Non-position-specific** loses order important information: RAT = ART = TAR
- **Solution:** S&M decompose word and phoneme strings into “triples”
 - FISH = _FI SH_ ISH FIS
 - Each input unit is associated with 1000 random triples
 - Active if that triple appears in the input word
- S&M still suffer some specific effects: Information learned about a letter in one context is not easily generalized
Improving S&M Model: Plaut et al

• Plaut et al (1996) solution: non-position-specific + linguistic constraints

• Monosyllabic word = onset + vowel + coda

• Strong constraints on order within these clusters:
 • E.g, if ‘t’ and ‘s’ are together, ‘s’ always precedes ‘t’
 • Only one set of grapheme-to-phoneme units is required for the letters in each group
 • Correspondences can be pooled across different words, even when letters appear in different positions

• Input representations:
 • Onset: first letter or consonant cluster (30)
 • y s p t k q c b d g f v j z l m n r w h ch gh gn ph ps rh sh th ts wh
 • Vowel (27)
 • e l o u a y ai au aw ay ea ee ei eu ew ey ie oe oo ou ow oy ue ui uy
 • Coda: final letter or consonant cluster (48)
 • h r l m n b d g cx f v j s z p t k q bb ch ck dd dg ff gg gh gn ks ll ng nn ph pp ps rr sh sl ss tch th ts tt zz u e es ed
 • Monosyllabic words are spelled using one or more candidates from each of the 3 groups:
 • THROW: (‘th’ + ‘r’), (‘o’), (‘w’)
Output representations

- Output Representations
- Phonology: groups of mutually exclusive members
 - Onset (23)
 - $sS\ C$
 - $zZjfVDbpbdkgmn\ h$
 - $l\ r\ w\ y$
 - Vowel (14)
 - $aeiou@^AEIOUWY$
 - Coda (24)
 - $r\ s\ z$
 - $l\ f\ v\ p\ k$
 - $m\ nN\ t$
 - $bgd\ SZTD\ j$
 - psks\ ts
 - “Scratch” = ‘s kr a ______ C’

The network architecture

- The architecture of the Plaut et al network:
 - There are a total 105 possible orthographic onsets, vowels, and codas
 - There are 51 possible phonological onsets, vowels, and codas
- Performance of the Plaut et al model:
 - Succeeds in learning both regular and exception words
 - Produces the frequency x regularity interaction
 - Demonstrates the influences of frequency and neighbourhood size
- What is the performance on non-words?
 - For consistent words (HEAN/DEAN): model (98%) versus human (94%)
 - For inconsistent words (HEAF/DEAF/LEAF): model (72%), human (78%)
 - This reflects production of regular forms: both human & model produced both
 - Highlights the importance of encoding … how much knowledge is implicit in the coding scheme
Summary

- Seidenberg & McClelland trained based on the log frequencies of words
 - People learn from absolute frequencies which: low frequency items too rare?
 - Plaut et al model, however, succeeds with absolute frequencies
- The right encoding scheme is essential for modeling the findings
 - How much linguistic knowledge is “given” to the network by Plaut’s encoding?
 - They assume this knowledge could be partially acquired prior to reading
 - i.e. children learn to pronounce “talk” before they can read it
 - Doesn’t scale to polysyllabic words
- Does not explain the double dissociation:
 ✔ Surface dyslexics (can read exceptions, but not non-words)
 ✘ Phonological dyslexics (can pronounce non-words, but not irregulars)

Connectionist models of Acquisition

- Symbolic models emphasise the learning of rules and exceptions
- Connectionist models have no direct correlate to such mechanisms
 - Knowledge is stored in a distributed weight matrix, learned from experience
- Models of learning:
 - Start state of the cognitive system
 - Learning mechanism
 - Training environment
 - Acquired skill
- Connectionist models provide an opportunity to model the learning process itself, not just the resulting acquired skill
 - We can test models against developmental data, at various points during learning
 - Discontinuities in performance (sudden changes in behaviour) can be explained by “emergent properties” of a single, continuous mechanism
Learning the Past Tense

• The problem of past tense formation:
 • Regular formation: stem + ‘ed’
 • Irregualrs do show some patterns:
 • No-change: hit » hit (all end in a ‘t’ or ‘d’)
 • Vowel-change: ring » rang, Sing » sang (rhymes often share vowel-change)
 • Arbitrary: go » went

• Young children often form the past tense of irregular verbs (like GO) by adding ED: overregularisations
 • “go”+”ed” » “goed”
 • Suggests incorrect application of a learned rule, not just rote learning or imitation

• Overregularisations often occur after the child has already succeeded in producing the correct irregular form: “went”

• Thus we need to explain this “U-shaped” learning curve

A Symbolic Account: Dual-Route Model

• General pattern of behaviour:
 • Early: children learn past tenses by rote (forms are stored in memory)
 • Later: recognise regularities, add general device to add ‘ed’ suffix
 • Now: no need to memorise forms, but this leads to incorrect generalisation of the regular rule to irregulars
 • Finally: distinguish which forms can be generated by the rule, and which must be stored (and accessed) as exceptions

• A Dual Route Model:
 • Errors result during the transition from rote learning to rule-governed
 • Recovery occurs after sufficient exposure to irregulars:
 • Increased “strength”
 • Frequency based
 • Faster recovery for frequent irregulars
The Dual-Route Model

- As with reading aloud, this proposal requires two qualitatively different types of mechanism

- Accounts for the observed dissociation:
 - Children make mistakes on irregulars only

- Evidence for double dissociation (Pinker 1994)
 - In some language disorders, children preserve performance on irregulars but not regulars
 - In other disorders, the opposite pattern is observed

- Accounts for the U-shaped learning curve
 - And since irregulars differ in “representational strength” it explains why overregularisation of high frequency irregulars is uncommon

- No explicit account of how the “+ed” rule is learned

Language Acquisition

- Perhaps the notion of inflection is innately specified, and need not itself be learned:
 - The inflectional mechanism is triggered by the environment or maturation
 - Then the exact (language specific) manifestation must be learned

- Criticisms:
 - Early learning tends to be focussed on irregular verbs
 - Irregular sub-classes (hit, sing, ring) might lead to incorrect rule learning
 - Do occur, but typically late in learning
 - How are good/spurious rules distinguished and selected
 - English is unusual in possessing a large class of regular verbs
 - Only 180 irregulars
 - Only 20% of plurals in Arabic are regular
 - Norwegian has 2 regular forms for verbs: 3 route model?
Towards a Connectionist Model

• No distinct mechanisms for regular and irregular forms

• No innately specified maturation stage, no rules to be triggered

• Parsimonious:
 • Simplifies the structural complexity of the starting state
 • Learning exploits the structure of the learning environment

• Rummelhart and McClelland (1986)
 • 1st attempt to model this problem (or any development system)
 • Modelled U-shaped learning, but heavily criticised (Pinker & Prince 1988)

• Plunkett & Marchman
 • Use a feed-forward network, one hidden layer

Rummelhart and McClelland (1986)

• A single-layer feed-forward network (perceptron)
 • Input: is a phonological representation of the stem (wickelfeatures)
 • Output: is a phonological representation of the past tense (wickelfeatures)
 • Trained using the perceptron learning rule

• Training:
 • First trained on 10 high frequency verbs (8 irregular, 2 regular), 10 epochs
 • Perfect performance
 • Then 420 (medium frequency) verbs (80% regular), 190 epochs
 • Early in training, shows tendency to overregularise, i.e. modelling stage 2
 • End of training, exhibits “adult” (near perfect) performance
 • Generalised reasonably well to 86 low frequency verbs in test set
Performance of R&M (1986)

- Criticisms:
 - Problems with representation using wickelphones/wickelfeatures
 - U-shape depends on sudden change from 10-420 in the training regime
 - Rote learning of 1st 10 verbs: no generalisation to novel stems after 10 epochs
 - Most of the 410 new verbs are regular:
 - overwhelming the network and leading to overregularisation

- Justification: children do exhibit vocabulary spurt at end of year 2
 - But overregularisation errors typically occur at end of year 3
 - Vocabulary spurt is mostly due to nouns

- Single layer Perceptron only works for linearly separable problems
 - Plunkett & Marchman (1991) show residual error remains after extensive training
 - Suggests a hidden-layer network

Plunkett and Marchman (1993)

- A standard feed forward network with one hidden layer

- Maps a phonological representation of the stem to a phonological representation of the past tense

- Initially, the model is trained to learn the past tense of 10 regular and 10 irregular verbs
 - Represents current estimates of children’s early vocabulary

- Training proceeds using the standard backprop algorithm, in response to error between actual and desired output
 - Is this developmentally plausible?

- Learning must configure the network for both regulars and irregulars
 - Consider: hit » hit, but pit » pitted
 - We know multi-layer networks can do this, but considerable training may be required
Plunkett and Marchman (continued)

- Training:
 - Initial period of 10 regular and 10 irregular verbs
 - Then vocabulary was gradually increased, to mimic the gradual uptake of words in children
 - Total: 500 word stems, 90% regular (similar to the relative frequency of regulars in English)
 - Higher frequency verbs were introduced earlier in training, and so were also presented to the network more often
 - Irregulars are more frequent, so appear more often in training
 - This is essential, otherwise the regulars swamp the network
 - Arguably more accurately reflects the child’s learning environment
 - The final model successfully learned the 500 verbs in the training set
 - But errors were made during the learning phase
 - Caused by interference between mappings for regulars and irregulars before mature connection weights have been discovered

Performance of P&M

- Early acquisition is characterised by a period of error free performance
- Low overall rate (5-10%) of overregularisation errors
- Overregularisation is not restricted to a particular period of development
- Common irregulars do not exhibit overregularisation (e.g. ‘goed’ is rare)
- Errors are phonologically conditioned: No change verbs (hit) are robust to overregularisation (e.g. ‘hitted’ is rare)
- Only a very small number of irregularisation errors are observed (e.g. where the network produces ‘bat’ for ‘bite’)

- Generally compatible with the results of studies by Marcus et al (1992):
 - Early performance is error free, and then low error is more or less random
Discussion

- Performance is closely tied to the training environment:
 - Onset of overregularisation is tied to a “critical mass” of regulars entering the child vocabulary
 - This subsides as the training learns the final solution for the task

- Highly sensitive to training environment:
 - Requires more training on arbitrary irregulars (go/went), which are highly frequent
 - Robust for no-change verbs (hit, put) which are more numerous (type) and less frequent (token)

- Models the frequency x regularity interaction:
 - Faster reaction time for high frequency irregulars than low frequency ones
 - No frequency advantage for regulars

- Differential behaviour for regulars and irregulars result from lesioning

- Suggests it is dangerous to infer dissociations in mechanisms due to observed dissociations in behaviour
 - Critical mass effects during learning can have the appearance of a distinct mechanism

Criticism

- We know multi-layered networks can learn such mappings in general; not proof that children use the same type of mechanism

- Pinker & Prasada argue that the (idiosyncratic) statistical properties of English help the model:
 - Regulars have low token frequency but high type frequency: facilitates the generalisation across this class of items
 - Irregulars have low type frequency but high token frequency: facilitates rote learning mechanism for these words

- They argue no connectionist model can accommodate default generalisation for a class which has both low type and token frequency
 - “Default” inflection of plural nouns in German appear to have this property

- No explanation of the double-dissociation observed by Pinker (1994)
Main conclusions

- Dissociations in performance, do not necessarily entail distinct mechanisms:
 - **Reading aloud**: a single mechanism explains regular and irregular pronunciation of monosyllabic rules
 - **Past tense**: a single model of regular and irregular past tense formation

- But, explaining **double dissociations** is difficult
 - Has been shown to be possible in small networks, but unclear if/how larger (more plausible) networks can demonstrate double dissociations

- Connectionist models excel at finding structure and patterns in the environment: "statistical inference machines"
 - The start state for learning may be relatively simple, unspecified
 - Constraints to aid/determine learning come from the environment

- Can such models scale up? Are they successful for languages with different distributional properties?

- Reference: The English Past Tense, chapter 11 of Plunkett & Elman