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“Perce ptrOnS ) [Rosenblatt 1958]

» Perceptron: a simple, one-layer, feed-forward network:

* Binary threshold activation function: a,,, =1ifnetinput_ >0

out

= otherwise

* Learning: the perceptron convergence rule

The error, 6=(¢,,-a,,)

» Two parameters can be adjusted: AG =-¢gd

. The threshold Aw = gda,,

* The weights



Visualising the error
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Gradient descent continued

* We need calculus to allow us to determine how the error varies when a
particular weight is varied:

(9E /{ Slope: Rate of change of E, with w
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For the logistic:
F=aout(1-aout

I_F * = slope of the activation function




Summary — Learning Rules

Perceptron convergence rule

Delta rule

* Depends on the (slope of the) activation function
For 2-layer networks using these rules:

* A solution will be found, if it exists

How do we know if network has learned successfully?

Summary — Error

For learning, we use (fout - aout) for each output unit, to change weights

To characterise the performance of the network as a whole, we need a measure
of global error:

* Across all output units
e Across all training patterns
One possible measure is RMS

* Another is entropy: doesn’t matter too much, since we only need to know if
performance is improving or deteriorating on a relative basis

* But, low overall error doesn'’t always mean the network has learned
successfully!



Linear Separability

* Single layer networks, including perceptrons, can only learn input-output

mappings that are “linearly separable”.
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Solving XOR with hidden units

XOR

« Consider the following network: O

* two-layer, feedforward

* 2 unitsin a “hidden” layer

* Hidden and output units

Input Hidden Target
h, h,

00 0 0 0

10 1 0 1

0 1 0 1 1

11 0 0 0

are threshold units: @ =1

» Representations at hidden layer:

* Problem: current learning rules cannot be used for hidden units:

« Why? We don’t know what the “error” is at these nodes (no target)

* “Delta” requires that we know the “target” activation

Aw =2¢0F a,,




Backpropagation of Error

(a) Forward propagation of activity :

netout = E Woh ) ahidden

§/® %2 a,, = f(net, )
o
(b) Backward propagation of error : 0 n @
Suatr = L (00,1000 Ty, (&) ©
-

(&)

Generalized Delta Rule

, o Aw, =¢€da;
Multi-layer networks can, in principle, / !
learn any mapp”']g function: For Output nodes : For hidden nodes :

0, =0'(net )(t, - a,) 0, = G'(neti)z w0,
* Not just linearly separable ones k
where, o'(net,) = a,(1-a;,)

But while there exists a solution for
any mapping problem

» backpropagation is not guaranteed to find it

Why? Local minima:

» Backprop can get trapped here

+ Global minimum (solution) is here \

¢ There are various means to address this




Example of Backpropagation

* Consider the following network, containing
a single hidden node e

» Calculate the weight changes for both layers

of the network, assuming learning rate € = 0.1 -0.3 0.7
and targets of: 1 1 e
The generalised Delta rule:
Aw, =¢€d.a;
' ' 0.5 0.1

For output nodes::
0, =0'(net )(t, —a,)

For hidden nodes:
o, = G'(neti)zékwki
k

where, o'(net;) = a;,(1-a,)

Aw; =¢gda;

F orwa rd an d For output nodes : For hidden nodes :
. o, =0'(net )(t, - a,) 0, =0'(net,)) » w0,
Backpropagation 2

where, o'(net,) = a,(1- a,)

a,= 6(0.70.65)
a,= 6(-0.3-0.65)

a,=0(1:0.5+1-0.1)



Learning lexical mappings

« Reading aloud: Mapping Orthography to Phonology
* English past-tense: Forming the past tense from the present
» Dual route accounts of exceptional vs regular forms
» Evidence: double dissociation in acquired dyslexics
» Connectionist account: a single mechanism
* Good performance on known and unknown words
* Models (normal) human behaviour
* Importance of input and output representations

* Double dissociations?

Reading Aloud

» Task: produce correct pronunciation for a word, given its printed form
» Suited to connectionist modeling:
* Need to learn mappings from one domain (orthography) to another (sound)
* Multi-layer networks are good at this, even when mappings are arbitrary
* Human learning is similar to network learning:
* |.e. learning takes place gradually over time
» Incorrect attempts are often corrected

* |If a network can’t model this linguistic task successfully, it would be a serious blow
to connectionist modeling. But ...



Dual Route

Model

« The standard model of reading posits two

independent routes leading to pronunciation
of a word, because ...

» People can easily pronounce
words they have never seen:

e SLINT or MAVE

» People can pronounce words
which break the “rules”:

* PINT or HAVE

» One mechanism uses general rules for
pronunciation

e The other mechanism stores pronunciation

[ Input (a letter string) |

Visual analysis

| Lexical route | [ Non-lexical route |
Word recognition Pronunciation
units rules

Word pronunciation

units

Speech system

[Output (a spoken word)|

information with specific words

Behaviour of Dual-Route Models

* Consider: MINT, PINT, and KINT
* MINT is a word:

» (Can be pronounced using the “rule-based” mechanism

e But also exists in the lexicon, so can be pronounced by the “lexical” route

* PINT is a word, but irregular
* (Can only be correctly pronounced by the lexical route
» Otherwise, it would rhyme with MINT

* KINT is not a word:

* No entry in the lexicon

« Can only be pronounced using the “rule-based” mechanism

« So should rhyme with MINT




Evidence for Dual-Route Model

Evidence from neuropsychology shows different patterns of behaviour for two types of brain damage that
are acquired after learning

Phonological dyslexia
* Symptom: Read words without difficulty, but cannot produce pronunciations for non-words
* Explanation: Damage to rule-based route; lexical route intact

Surface dyslexia:
* Symptom: Can pronounce words and non-words correctly, but tend to regularise irregulars
* Explanation: Damage to the lexical route; rule-based route intact

All Dual-Route models share:
* Alexicon for known words, with specific pronunciation information

* A rule mechanism for the pronunciation of unknown words

Towards a Connectionist Model

It is unclear how a connectionist model could naturally implement a dual-
route model:

* No obvious way to implement a lexicon to store information about
particular words; storage is typically distributed

* No clear way to distinguish “specific information” from “general rules”;
only one uniform way to store information: connection weights

Seidenberg & McClelland (1989): a standard 2-layer feedforward model
» Trained to pronounce all the monosyllabic words of English

* Learning is implemented using the backpropagation algorithm



Seidenberg and McClelland (1989)

* 2-layer feed-forward model:

[ 460 phonological units J

» Distributed representations at input and output i
» Distributed knowledge within the net ‘ 200 hidden units ]
+ Gradient descent learning i

{ 400 orthographic units ]

Input and Output
* Inputs are activated by the letters of the words
e 20% activated, on average netinputi = E j a jwij + biasl.
» QOutputs represent the phonological features
* 12% activated, on average
» Encoding of features does not affect the success

» Processing: Node activation is determined using the logistic function

Training the Mode|

¢ Learning
* Weights and bias are initially random
» Words are presented and outputs are computed
» Connection weights are adjusted based on backpropagation of error
* Training: All monosyllabic words of 3 or more letters (about 3000) words
* In each epoch, a subset was presented: frequent words appeared more often
* Over 250 epochs, (THE) was presented 230 times, least common 7 times
» Performance
* Qutputs were considered correct if closer to the correct pronunciation than that of any other word

» After 250 epochs, accuracy was 97%



Results: Seidenberg & McClelland

The model does successfully learn to map most regular and irregular word forms to their
correct pronunciation

It does this without separate routes for lexical or rule based processing
» There is no word specific memory
» |t does not perform as well as humans in pronouncing non-words

Naming Latency: Adult reaction times for naming a word is a function of variables such as
word frequency and spelling regularity

» The current model cannot directly mimic latencies

If we relate the output error score to latency, where phonological error score is the
difference between the actual pattern and the correct pattern

» Hypothesis: high error should correlate with longer latencies

Word Frequency Effects

Common words are pronounced more quickly than uncommon words

* This is true for almost all aspects of human information processing

Conventional (localist) explanation:

» Frequent words require a lower threshold of activity for “the word recognition device” to “fire”
* Infrequent words require a higher threshold of activity

In the Seidenberg & McClelland model, naming latency is modeled by error:

* Word frequency is reflected in the training procedure

* Phonological error is reduced by training, thus lower for high frequency words

The explanation of latencies in terms of error follows directly from the network’s architecture and
the training regime



Frequency x Regularity

In addition to faster naming of frequent words, human subjects exhibit:

» Faster pronunciation of regulars (e.g GAVE) than irregulars (e.g. HAVE)

« But this interacts with frequency: it is only observed with low frequency words
For regulars (filled circle) we observe a small effect of frequency

* [t takes slightly longer to pronounce the low frequency regulars

For irregulars (open square) we observe a large effect of frequency

. . . 590 8

The model precisely mimics this pattern: ’
Mean 570 Mean 6
2-route: Lexical route wins naming squared
faster for high f q hil latency error
aster for high frequency words, while (msec) 550]
confusion of the lexical and rule
outcome requires resolution for the 530 . ol !
irregular words High Low High Low
Frequency Frequency

Freguency x Neighborhood Size

The neighborhood size of a word is the number of words that differ by changing one letter
Neighborhood size has also been shown to affect naming latency, as with regularity:
* Not much influence for high frequency words

* Low frequency words with small neighborhoods (filled circles) are read much more
slowly than words with large neighborhoods (open squares)

Shows “cooperation” of the information learnt in response to different (but similar) inputs

. . 660 8

Again, the connectionist
. . . 340 1
model directly predicts this Mean = Mean |
naming 620 squared
. latency ., error

The 2 route model requires (msec) ouu 4L
a more ad hoc explanation, 580 D/D
grouping across localist 560 B ol

H 'h Low High ow

representations of the lexicon
Frequency Frequency



Spelling-to-Sound Consistency

Consistent spelling patterns: _UST
« All words have the same pronunciation
Inconsistent patterns are those with more than one: _AVE

Observation: adult readers produce pronunciations more quickly for non-words derived from
consistent patterns (NUST) than from inconsistent patterns (MAVE)

.. epe 640 ~ 16
This is difficult for 2-route models: g8 ’
Mean G3UF 15 Mean
» Since both are processed by the naming ” squared
non-lexical route latency ©° 4 error
(msec) ., 14
* Consistent and inconsistent rules o
would need to be distinguished 600 ——— -
The error in the connectionist model
predicts this latency effect perfectly —@— Experiment

—1— Simulation

Seidenberg & McClelland (1989)

The model is a single mechanism with no lexical entries or explicit rules
Response to an input is a function of the network’s entire experience
* Reflects previous experience on a particular word
* Experience with words resembling that string
E.g. specific experience with HAVE is sufficient to overcome the general information that _AVE is usually a long vowel

The network can produce a plausible pronunciation for MAVE, but error is introduced by experience with inconsistent
words like HAVE

Performance: 97% accuracy on pronouncing learned words

* Models: frequency & interaction with regularity, neighborhood, consistency
Limitations: It is not as good as humans at

* Reading non-words (model gets 60%, humans 90%)

* Lexical decision (FRAME is a word, but FRANE is not)



