Vectors and Vector spaces

- Many quantities in connectionist models are best represented as vectors (e.g., a group of neurons and weights on the inputs to a given neuron)

- A vector space is a set V of elements, called vectors, with the following properties:

 - To every pair, \mathbf{u} and \mathbf{v}, of vectors in V, there corresponds a vector $\mathbf{u} + \mathbf{v}$ also in V, called the sum of \mathbf{u} and \mathbf{v}, in such a way that addition is commutative and associative

 - For any scalar c and any vector \mathbf{v} in V, there is a vector $c \mathbf{v}$ in V, called the product of c and \mathbf{v}, in such a way that multiplication by scalars is associative and distributive with respect to vector addition

 - (and a few other axioms …)
Vectors

- A vector is a useful tool to represent patterns of numbers:
 - For instance, a person’s age (y), height (in), and weight (lb):

 \[
 \begin{align*}
 \text{Joe} & \quad \begin{bmatrix} 37 \\ 72 \\ 175 \end{bmatrix} \\
 \text{Mary} & \quad \begin{bmatrix} 10 \\ 30 \\ 61 \end{bmatrix} \\
 \text{Carol} & \quad \begin{bmatrix} 25 \\ 65 \\ 121 \end{bmatrix} \\
 \text{Brad} & \quad \begin{bmatrix} 66 \\ 67 \\ 155 \end{bmatrix}
 \end{align*}
 \]

- Each of these vectors has three components

Visualising vectors

- We can neatly visualise vectors with no more than three components:
 - This will prove helpful in developing a geometrical intuition about vectors (but everything we discuss extends to any number of components)
Scalar multiplication

- A scalar is a single real number, and vectors can be multiplied by scalars:

\[2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \]

- Multiplying a vector \(\mathbf{v} \) by a positive scalar \(s \) yields a vector \(\mathbf{v}' \) that points in the same direction as \(\mathbf{v} \), but that is longer or shorter by magnitude \(s \)

- Multiplying \(\mathbf{v} \) by a negative scalar, also yields a lengthened or shortened vector \(\mathbf{v}' \), but this time one pointing in the opposite direction of \(\mathbf{v} \)

- Two vectors are said to be collinear, if they are scalar multiples of one another

Addition

- Vectors with an equal number of components can be added:

\[\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \quad \mathbf{v}_1 + \mathbf{v}_2 = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \]

- \(\mathbf{v}_1 + \mathbf{v}_2 \) lies in between \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \), and forms the diagonal of a parallelogram with \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \)

- Vector addition is associative: \((\mathbf{v}_1 + \mathbf{v}_2) + \mathbf{v}_3 = \mathbf{v}_1 + (\mathbf{v}_2 + \mathbf{v}_3)\)

- Vector addition is commutative: \(\mathbf{v}_3 + \mathbf{v}_2 + \mathbf{v}_1 = \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3\)
Example: Addition and Scalar multiplication

- Using addition and scalar multiplication, we can compute averages:

\[u = \frac{1}{4} \left(\begin{bmatrix} 37 \\ 72 \\ 175 \end{bmatrix} + \begin{bmatrix} 10 \\ 30 \\ 61 \end{bmatrix} + \begin{bmatrix} 25 \\ 65 \\ 121 \end{bmatrix} + \begin{bmatrix} 66 \\ 67 \\ 155 \end{bmatrix} \right) = \begin{bmatrix} 34.5 \\ 58.5 \\ 128 \end{bmatrix} \]

- In vector notation:

\[u = \frac{1}{4} \left(v_1 + v_2 + v_3 + v_4 \right) \]

- Vector \(u \) is a linear combination of vectors \(v_1, v_2, v_3, \) and \(v_4 \), and contains the averages of their components

- Scalar multiplication is distributive: \(\frac{1}{4} v_1 + \frac{1}{4} v_2 + \frac{1}{4} v_3 + \frac{1}{4} v_4 = \frac{1}{4} (v_1 + v_2 + v_3 + v_4) \)

Linear combinations

- A vector \(v \) is a linear combination of vectors \(v_1, v_2, \ldots, v_n \) if there are scalars \(c_1, c_2, \ldots, c_n \) such that:

\[v = c_1 v_1 + c_2 v_2 + \cdots + c_n v_n \]

- Example: \(u = \begin{bmatrix} 9 \\ 10 \end{bmatrix} \) is a linear combination of \(v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \) and \(v_2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \):

\[u = 3 \cdot v_1 + 2 \cdot v_2 \]

- We effectively find scalars to adjust \(v_1 \) and \(v_2 \) to form a parallelogram with \(u \)

- Any vector in the shaded area can be constructed in this way using positive scalars
Linear combinations (cont’d)

- The set of all linear combinations of v_1, v_2, \ldots, v_n is said to be the set spanned by v_1, v_2, \ldots, v_n

- Example: the vectors $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ span all of three-dimensional space, because any $v = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ can be written as: $v = a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

- We call these vectors the standard basis for three-dimensional space

- Q: What about the basis of n-dimensional space?

n-dimensional space

- An n-dimensional space is the set of vectors spanned by a set of n linearly independent vectors, which we refer to as the basis for that space

 - A set is linearly independent if it does not contain any vector v_i that can be written as a linear combination of other vectors in the set

 - Conversely, a set is linearly dependent if it does contain a vector v_i that can be written as a linear combination of other vectors in the set

- Consequence 1: If a set of n vectors is linearly dependent, it spans less than n-dimensional space

- Consequence 2: There can no more than n linearly independent vectors in n-dimensional space

- Consequence 3: There is only one way in which a vector can be written as a linear combination of a set of linear independent vectors (i.e., coefficients are unique)
Vectors and Vector spaces

• Lists of numbers, geometrical arrows, n-dimensional space—just what exactly is a vector?

• A vector space is a set \(V \) of elements, called vectors, with the following properties:

 • To every pair, \(u \) and \(v \), of vectors in \(V \), there corresponds a vector \(u + v \) also in \(V \), called the sum of \(u \) and \(v \), in such a way that addition is commutative and associative

 • For any scalar \(c \) and any vector \(v \) in \(V \), there is a vector \(cv \) in \(V \), called the product of \(c \) and \(v \), in such a way that multiplication by scalars is associative and distributive with respect to vector addition

 • (and a few other axioms …)

 • … a vector is a rather undefined object; anything obeying these rules is a vector space (e.g., the set of polynomials of order \(n \) is a vector space)

• We use numbers to represent vectors, and we refer to vector components as coordinates in vector space, because these components are unique coefficients for a given basis

Inner products

• If we multiply two vectors \(\mathbf{v} \) and \(\mathbf{w} \) with the same number of components, we obtain their inner product \(\mathbf{v} \cdot \mathbf{w} \):

\[
\mathbf{v} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}
\]

\[
\mathbf{v} \cdot \mathbf{w} = (3 \cdot 1) + (-1 \cdot 2) + (2 \cdot 1) = 3.
\]

• The inner product between two vectors is a measure of their similarity:

 • The closer they are in space, the more positive the inner product

 • The more they point in opposite direction, the more negative
Inner products: Length

• We can use the inner product of a vector with itself to measure its length:

\[v = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \quad v \cdot v = 3^2 + 4^2 = 25. \]

Hence, following the Pythagorean theorem, we define vector length as:

\[\|v\| = (v \cdot v)^{1/2} = \sqrt{v \cdot v} \]

• This definition includes our intuitions about length:

\[\|cv\| = |c| \|v\| \quad \|v_1 + v_2\| \leq \|v_1\| + \|v_2\| \]

(recall the parallelogram)

Inner products: Angle

• We can also use the inner product to measure the angle between two vectors \(v \) and \(w \) (= their inner product adjusted for their lengths):

\[\cos \theta = \frac{v \cdot w}{\|v\| \|w\|} = \cos \theta = \frac{\sum_{i=1}^{n} v_i w_i}{(\sum_{i=1}^{n} v_i^2)^{1/2}(\sum_{i=1}^{n} w_i^2)^{1/2}} \]

• Example: The angle between \(v_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \) and \(v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \) is found through:

\[v_1 \cdot v_2 = 1 \quad \|v_1\| = 1 \quad \|v_2\| = \sqrt{2} \quad \cos \theta = \frac{1}{1 \cdot \sqrt{2}} = 0.707 \]

Hence: \(\theta = \cos^{-1} (0.707) = 45^\circ \)

• If \(\cos \theta = 0 \) (=90°), two vectors are orthogonal (at right angles) to one another.
Connectionist Language Processing — Crocker & Brouwer

Connectionist: A single unit

- The activation of unit u computes the inner product of w and v: $u = w \cdot v$

- The output of unit u effectively indicates how close an input vector v is to the weight vector w (close $\rightarrow +$; near orthogonal $\rightarrow 0$; opposite $\rightarrow -$)

- A unit thus effectively divides the input space into two parts: a part to which its response is positive and a part where to which its response is negative

Connectionist Language Processing — Crocker & Brouwer

Matrices

- To describe a full layer, we need the concept of a $m \times n$ matrix—an array of real numbers:

 $$ M = \begin{bmatrix} 3 & 4 & 5 \\ 1 & 0 & 1 \end{bmatrix} \quad N = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad P = \begin{bmatrix} 10 & -1 \\ -1 & 27 \end{bmatrix} $$

- Matrices, like vectors, can be multiplied by a scalar:

 $$ 3M = 3 \begin{bmatrix} 3 & 4 & 5 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 9 & 12 & 15 \\ 3 & 0 & 3 \end{bmatrix} $$

- Two matrices with the same number of rows and columns can be added:

 $$ M + N = \begin{bmatrix} 3 & 4 & 5 \\ 1 & 0 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 0 & 2 \\ 4 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 7 \\ 5 & 1 & 0 \end{bmatrix} $$

Connectionist Language Processing — Crocker & Brouwer
Multiplying a Vector by a Matrix

- A \(m \times n \) matrix \(W \) can be multiplied by an \(n \)-component vector \(v \), yielding an \(m \)-component vector \(u \), consisting of the inner products between vector \(v \) and each of the row vectors \(w_i \) of \(W \):

\[
\begin{pmatrix}
 \vdots \\
 v_1 \\
 \vdots \\
 v_n
\end{pmatrix}
\cdot
\begin{pmatrix}
 w_1 \\
 \vdots \\
 w_m
\end{pmatrix}
= v_1 w_1 + v_2 w_2 + \cdots + v_n w_n
\]

\[
Wv = \begin{bmatrix} 3 & 4 & 5 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} = [3\cdot1 + 4\cdot0 + 5\cdot2 \\ 1\cdot1 + 0\cdot0 + 1\cdot2] = [13 \\ 3]
\]

- From another perspective, \(u \) is linear combination of the column vectors \(w_j \) of \(W \) with the components of \(v \) as coefficients:

\[
\begin{pmatrix}
 w_1 \\
 \vdots \\
 w_m
\end{pmatrix}
\cdot
\begin{pmatrix}
 v_1 \\
 \vdots \\
 v_n
\end{pmatrix}
= v_1 w_1 + v_2 w_2 + \cdots + v_n w_n
\]

\[
W = \begin{bmatrix} 3 & 4 & 5 \\ 1 & 0 & 1 \end{bmatrix}
\]

\[
v = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}
\]

\[
Wv = \begin{bmatrix} 3 \cdot 1 + 4 \cdot 0 + 5 \cdot 2 \\ 1 \cdot 1 + 0 \cdot 0 + 1 \cdot 2 \end{bmatrix} = [13 \\ 3]
\]

Vector-Matrix Multiplication as a Function

- The space spanned by the column vectors of a matrix is the column space, and the vector \(u = Wv \) is in the column space of \(W \)

- Matrix \(W \) is thus effectively a function from one set of vectors to another

- That is, if we consider an \(n \)-dimensional vector space \(V \) (the domain) and an \(m \)-dimensional vector space \(U \) (the range), multiplication by a fixed matrix \(W \) is a function from \(V \) to \(U \):
Connectionism: A single layer

- Each unit u_i has its own weight vector w_i, and the activation of unit u_i is the inner product of w_i and input vector v: $u_i = w_i \cdot v$

- If we define a matrix W that has weight vectors w_i as its row vectors, the activation of all units u_i is neatly given as: $u = Wv$

- Each unit u_i matches its weight vector w_i to the input vector v

Connectionism: Multiple layers

- In a multilayer network, the output vector $u = Mz$ depends on $z = Nv$

- Hence, the output of the network relates to the input through $u = M(Nv)$

- Using matrix multiplication:

$$
\begin{bmatrix}
M \\
N \\
P
\end{bmatrix}
\begin{bmatrix}
n_1 & n_2 & \cdots & n_k \\
M_{n_1} & M_{n_2} & \cdots & M_{n_k}
\end{bmatrix}
= \begin{bmatrix}
3 & 4 & 5 \\
1 & 0 & 1 \\
0 & 1 & 2
\end{bmatrix}
\begin{bmatrix}
1 & 2 \\
0 & 1 \\
-1 & 1
\end{bmatrix}
= \begin{bmatrix}
(3+8-5) & (6+0+5) \\
(1+0-1) & (2+0+1) \\
(0+2-2) & (0+0+2)
\end{bmatrix}
= \begin{bmatrix}
6 & 11 \\
0 & 3 \\
0 & 2
\end{bmatrix}
$$

we can rewrite it as a single layer system $u = M(Nv) = (MN)v = Pv$

- This is why we use a non-linear (e.g., logistic) transformation on the inner products as outputs of z and u, thereby effectively modelling decisions
Linear versus Nonlinear systems

- A function $y = f(x)$ describes a linear system, if for any inputs x_1 and x_2, the following equations hold:

 - $f(cx) = cf(x)$

 - $f(x_1 + x_2) = f(x_1) + f(x_2)$

- Linear systems are easy to analyse; once we know its responses to a set of inputs forming the basis of the input space, we can compute its response to any other input

- Nonlinear systems are simply all systems for which these equations do not hold, and are therefore more difficult to analyse

In sum …