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“Perceptrons” [Rosenblatt 1958]

• Perceptron: a simple, one-layer, feed-forward network: 

• Binary threshold activation function: 

• Learning: the perceptron convergence rule 

• Two parameters can be adjusted: 

• The threshold 

• The weights
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Visualising the error „surface“
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Gradient descent continued
• We need calculus to allow us to determine how the error varies when a 

particular weight is varied:
Slope: Rate of change of E, with w

Error = (tout - aout)2

Derivative of the activation 
function with respect to w, i.e. 

its slope

F*=aout(1-aout)

For the logistic: 
F*=aout(1-aout)
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Summary – Learning Rules
• Perceptron convergence rule 

• Delta rule 

• Depends on the (slope of the) activation function 

• For 2-layer networks using these rules: 

• A solution will be found, if it exists 

• How do we know if network has learned successfully?
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Summary – Error
• For learning, we use (tout - aout) for each output unit, to change weights 

• To characterise the performance of the network as a whole, we need a measure 
of global error: 

• Across all output units 

• Across all training patterns 

• One possible measure is RMS 

• Another is entropy: doesn’t matter too much, since we only need to know if 
performance is improving or deteriorating on a relative basis 

• But, low overall error doesn’t always mean the network has learned 
successfully! 
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Linear Separability
• Single layer networks, including perceptrons, can only learn input-output 

mappings that are “linearly separable”.
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Solving XOR with hidden units 
• Consider the following network: 

• two-layer, feedforward 

• 2 units in a “hidden” layer 

• Hidden and output units 
are threshold units: 

• Representations at hidden layer: 

• Problem: current learning rules cannot be used for hidden units: 

• Why? We don’t know what the “error” is at these nodes (no target) 

• “Delta” requires that we know the “target” activation
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Backpropagation of Error

€ 

(a) Forward propagation of activity :

net out = woh ⋅ ahidden∑
aout = f (net out )

€ 

(b) Backward propagation of error :

errhidden = woh ⋅ δout∑
δhidden = ʹ f (net hidden ) ⋅ errhidden
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Generalized Delta Rule
• Multi-layer networks can, in principle,  

learn any mapping function: 

• Not just linearly separable ones 

• But while there exists a solution for  
any mapping problem 

• backpropagation is not guaranteed to find it 

• Why?  Local minima: 

• Backprop can get trapped here 

• Global minimum (solution) is here 

• There are various means to address this

€ 

Δwij = εδia j

For output nodes :                 For hidden nodes :

δk = ʹ σ (netk )(tk − ak )         δi = ʹ σ (neti) wki
k
∑ δk

where, ʹ σ (neti) = ai(1− ai)
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Example of Backpropagation 
• Consider the following network, containing  

a single hidden node 

• Calculate the weight changes for both layers  
of the network, assuming learning rate ε = 0.1  
and targets of: 1  1

a2

1 1

0.5 0.1

a3 a4

-0.3 0.7

€ 

The generalised Delta rule :
Δwij = εδia j

For output nodes :
δk = ʹ σ (netk )(tk − ak )
For hidden nodes :

δi = ʹ σ (neti) δkwki
k
∑

where, ʹ σ (neti) = ai(1− ai)
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 = 0.1·0.13·0.65 ≈ 0.008Δw32  = 0.1·0.1·0.65 ≈ 0.007Δw42

 = 0.1·0.007·1 ≈ 0.0007Δw20  = 0.1·0.007·1 ≈ 0.0007Δw21

a2

1 1

a3 a4

1 1

-0.3 w32 0.7 w42

0.1 w210.5 w20

2a  = σ(1·0.5+1·0.1)

3a  = σ(-0.3·0.65) 4 ≈ 0.60a4a  = σ(0.7·0.65) ≈ 0.13
3δ  = σʹ(0.45)(1-0.45)

≈ 0.1
4δ  = σʹ(0.60)(1-0.60)

δ
2 = σʹ(0.65)(-0.3·0.13+0.7·0.1)

≈ 0.007

3 ≈ 0.45a

2 ≈ 0.65a

€ 

Δwij = εδia j

For output nodes :                 For hidden nodes :

δk = ʹ σ (netk )(tk − ak )         δi = ʹ σ (neti) wki
k
∑ δk

where, ʹ σ (neti) = ai(1− ai)

Forward and 
Backpropagation



Connectionist Language Processing – Crocker & Brouwer

Learning lexical mappings
• Reading aloud: Mapping Orthography to Phonology 

• English past-tense: Forming the past tense from the present 

• Dual route accounts of exceptional vs regular forms 

• Evidence: double dissociation in acquired dyslexics 

• Connectionist account:  a single mechanism 

• Good performance on known and unknown words 

• Models (normal) human behaviour 

• Importance of input and output representations 

• Double dissociations?
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Reading Aloud
• Task:  produce correct pronunciation for a word, given its printed form 

• Suited to connectionist modeling: 

• Need to learn mappings from one domain (orthography) to another (sound) 

• Multi-layer networks are good at this, even when mappings are arbitrary 

• Human learning is similar to network learning: 

• I.e. learning takes place gradually over time 

• Incorrect attempts are often corrected 

• If a network can’t model this linguistic task successfully, it would be a serious blow 
to connectionist modeling.  But …
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Dual Route Model
• The standard model of reading posits two 

independent routes leading to pronunciation 
of a word, because … 

• People can easily pronounce 
words they have never seen: 

• SLINT or MAVE 

• People can pronounce words  
which break the “rules”: 

• PINT or HAVE 

• One mechanism uses general rules for 
pronunciation 

• The other mechanism stores pronunciation 
information with specific words
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Behaviour of Dual-Route Models 
• Consider:  MINT, PINT, and KINT 

• MINT is a word: 

• Can be pronounced using the “rule-based” mechanism 

• But also exists in the lexicon, so can be pronounced by the “lexical” route 

• PINT is a word, but irregular 

• Can only be correctly pronounced by the lexical route 

• Otherwise, it would rhyme with MINT 

• KINT is not a word: 

• No entry in the lexicon 

• Can only be pronounced using the “rule-based” mechanism 

• So should rhyme with MINT
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Evidence for Dual-Route Model
• Evidence from neuropsychology shows different patterns of behaviour for two types of brain damage that 

are acquired after learning 

• Phonological dyslexia 

• Symptom:  Read words without difficulty, but cannot produce pronunciations for non-words 

• Explanation:  Damage to rule-based route; lexical route intact 

• Surface dyslexia: 

• Symptom:  Can pronounce words and non-words correctly, but tend to regularise irregulars 

• Explanation:  Damage to the lexical route; rule-based route intact 

• All Dual-Route models share: 

• A lexicon for known words, with specific pronunciation information 

• A rule mechanism for the pronunciation of unknown words
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Towards a Connectionist Model
• It is unclear how a connectionist model could naturally implement a dual-

route model: 

• No obvious way to implement a lexicon to store information about 
particular words; storage is typically distributed 

• No clear way to distinguish “specific information” from “general rules”; 
only one uniform way to store information: connection weights 

• Seidenberg & McClelland (1989): a standard 2-layer feedforward model 

• Trained to pronounce all the monosyllabic words of English 

• Learning is implemented using the backpropagation algorithm



Connectionist Language Processing – Crocker & Brouwer

Seidenberg and McClelland (1989)
• 2-layer feed-forward model: 

• Distributed representations at input and output 

• Distributed knowledge within the net 

• Gradient descent learning 

• Input and Output 

• Inputs are activated by the letters of the words 

• 20% activated, on average 

• Outputs represent the phonological features 

• 12% activated, on average 

• Encoding of features does not affect the success 

• Processing: Node activation is determined using the logistic function

460 phonological units

200 hidden units

400 orthographic units

€ 

netinput i = a jwijj∑ + biasi
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Training the Model
• Learning 

• Weights and bias are initially random 

• Words are presented and outputs are computed 

• Connection weights are adjusted based on backpropagation of error 

• Training: All monosyllabic words of 3 or more letters (about 3000) words 

• In each epoch, a subset was presented: frequent words appeared more often 

• Over 250 epochs, (THE) was presented 230 times, least common 7 times 

• Performance 

• Outputs were considered correct if closer to the correct pronunciation than that of any other word 

• After 250 epochs, accuracy was 97%
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Results: Seidenberg & McClelland
• The model does successfully learn to map most regular and irregular word forms to their 

correct pronunciation 

• It does this without separate routes for lexical or rule based processing 

• There is no word specific memory 

• It does not perform as well as humans in pronouncing non-words 

• Naming Latency: Adult reaction times for naming a word is a function of variables such as 
word frequency and spelling regularity  

• The current model cannot directly mimic latencies 

• If we relate the output error score to latency, where phonological error score is the 
difference between the actual pattern and the correct pattern 

• Hypothesis:  high error should correlate with longer latencies
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Word Frequency Effects
• Common words are pronounced more quickly than uncommon words 

• This is true for almost all aspects of human information processing  

• Conventional (localist) explanation: 

• Frequent words require a lower threshold of activity for “the word recognition device” to “fire” 

• Infrequent words require a higher threshold of activity 

• In the Seidenberg & McClelland model, naming latency is modeled by error: 

• Word frequency is reflected in the training procedure 

• Phonological error is reduced by training, thus lower for high frequency words 

• The explanation of latencies in terms of error follows directly from the network’s architecture and 
the training regime
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Frequency x Regularity
• In addition to faster naming of frequent words, human subjects exhibit: 

• Faster pronunciation of regulars (e.g GAVE) than irregulars (e.g. HAVE) 

• But this interacts with frequency:  it is only observed with low frequency words 

• For regulars (filled circle) we observe a small effect of frequency 

• It takes slightly longer to pronounce the low frequency regulars  

• For irregulars (open square) we observe a large effect of frequency  

• The model precisely mimics this pattern: 

• 2-route:  Lexical route wins  
faster for high frequency words, while 
confusion of the lexical and rule  
outcome requires resolution for the 
irregular words
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Frequency x Neighborhood Size
• The neighborhood size of a word is the number of words that differ by changing one letter  

• Neighborhood size has also been shown to affect naming latency, as with regularity: 

• Not much influence for high frequency words 

• Low frequency words with small neighborhoods (filled circles) are read much more 
slowly than words with large neighborhoods (open squares) 

• Shows “cooperation” of the information learnt in response to different (but similar) inputs 

• Again, the connectionist 
model directly predicts this 

• The 2 route model requires  
a more ad hoc explanation,  
grouping across localist 
representations of the lexicon
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Spelling-to-Sound Consistency
• Consistent spelling patterns:  _UST 

• All words have the same pronunciation 

• Inconsistent patterns are those with more than one:  _AVE 

• Observation:  adult readers produce pronunciations more quickly for non-words derived from 
consistent patterns (NUST) than from inconsistent patterns (MAVE) 

• This is difficult for 2-route models: 

• Since both are processed by the 
non-lexical route 

• Consistent and inconsistent rules  
would need to be distinguished  

• The error in the connectionist model 
predicts this latency effect perfectly
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Seidenberg & McClelland (1989)
• The model is a single mechanism with no lexical entries or explicit rules 

• Response to an input is a function of the network’s entire experience 

• Reflects previous experience on a particular word 

• Experience with words resembling that string 

• E.g. specific experience with HAVE is sufficient to overcome the general information that _AVE is usually a long vowel 

• The network can produce a plausible pronunciation for MAVE, but error is introduced by experience with inconsistent 
words like HAVE 

• Performance: 97% accuracy on pronouncing learned words 

• Models:  frequency & interaction with regularity, neighborhood, consistency 

• Limitations:  It is not as good as humans at 

• Reading non-words (model gets 60%, humans 90%) 

• Lexical decision (FRAME is a word, but FRANE is not)


