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Vectors and Vector spaces
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Vectors

* A vector is a useful tool to represent patterns of numbers:

* Forinstance, a person’s age (y), height (in), and weight (Ib):

[ 37 |
Joe 72

175

25 |
Carol 65

121]

10
Mary |30
61
66
Brad 67
155

* Each of these vectors has three components



Visualising vectors

 We can neatly visualise vectors with no more than three components:

Weight *
80}

Mary

10
30
61

* This will prove helpful in developing a geometrical intuition about vectors
(but everything we discuss extends to any number of components)



Scalar multiplication

A scalar is a single real number, and vectors can be multiplied by scalars:

[

o Multiplying a vector v by a positive scalar s yields a vector v’ that points in the same
direction as v, but that is longer or shorter by magnitude s

 Multiplying v by a negative scalar, also yields a lengthened or shortened vector v’, but
this time one pointing in the opposite direction of v

e Two vectors are said to be collinear, if they are scalar multiples of one another



Addition

e \ectors with an equal number of components can be added:

A
1 3 4 4l
el el] el

 v1 +v2lies in between vl and v2, and forms
the diagonal of a parallelogram with v1 and v2

e \ector addition is associative: (v1 + v2) + v3 = v1 + (V2 + v3)

* Vector addition is commutative: v3 +v2 + vl =v1 +v2 + v3



Example: Addition and Scalar multiplication

* Using addition and scalar multiplication, we can compute averages:

| 25 34.5]
= 72 + +1 65| + 58.5
175 121 155 128

e |n vector notation:

u--‘IT (vi+vy+vy+vy)

 \ector uis a linear combination of vectors v1, v2, v3, and v4, and contains the
averages of their components

e Scalar multiplication is distributive: Yav1 + 14v2 + Y4v3 + Yav4 = Va(v1 + v2 + v3 + v4)



LInear combinations

. vn if there are scalars ¢1,¢2,

A vector v is a linear combination of vectors v1,v2, ..
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« \We effectively tind scalars to adjust v1
and v2 to form a parallelogram with u

Using positive scalars, any vector in
the shaded area can be constructed.

Using positive and negative scalars, any
vector in the plane can be constructed



LInear combinations (cont’d)

The set of all linear combinations of vl ,v2,....vnis said to be the set
spanned by vl v2,...,.vh

x o
Example: the vectors |of, |1} and | 0| Span all of three-dimensional space,
0] 10 1]
al 1] [o] [o
because any v = | b] can be written as: v=a |0|+ b | 1|+ c|0
¢ 0] 0] |1

* We call these vectors the standard basis for three-dimensional space

* Q: What about the basis of n-dimensional space”?



Nn-dimensional space

* An n-dimensional space is the set of vectors spanned by a set of n linearly
independent vectors, which we refer to as the basis for that space

* A setislinearly independent if it does not contain any vector vithat can be written
as a linear combination of other vectors in the set

 Conversely, a set is linearly dependent if it does contain a vector vi that can be
written as a linear combination of other vectors in the set

* Consequence 1: If a set of nvectors is linearly dependent, it spans less than n-
dimensional space

* (Consequence 2: There can no more than n linearly independent vectors in n-
dimensional space

 (Conseqguence 3: There is only one way in which a vector can be written as a linear
combination of a set of linear independent vectors (i.e., coefficients are unique)



Vectors and Vector spaces

* Lists of numbers, geometrical arrows, n-dimensional space—ijust what exactly is a vector?
* A vector space is a set V of elements, called vectors, with the following properties:

* TJo every pair, u and v, of vectors in V, there corresponds a vector u + v also in V,
called the sum of u and v, in such a way that addition is commutative and associative

* For any scalar ¢ and any vector v in V, there is a vector cv in V, called the product of ¢

and v, in such a way that multiplication by scalars is associative and distributive with
respect to vector addition

* (and a few other axioms ...)

* ... avector is arather undefined object; anything obeying these rules is a vector space
(e.g., the set of polynomials of order nis a vector space)

 We use numbers to represent vectors, and we refer to vector components as coordinates
iNn vector space, because these components are unique coefficients for a given basis



INnner products

It we multiply two vectors v and w with the same number of components, we
obtain their inner product v - w:

3 1
v=|—1 w=| 2
2 1

vw=0@3-D+1-2)+(2:-1)=23.
The inner product between two vectors is a measure of their similarity:

* The closer they are in space, the more positive the inner product

* The more they point in opposite direction, the more negative



INnner products: Lengtnh

We can use the inner product of a vector with itself to measure its length:

’ ‘
V=1, v .v=324 42= 25,

Hence, following the Pythagorean theorem,
we define vector length as:

Iv] = v - v)% =+(v-v)

This definition includes our intuitions about length:

levil = lel vl vy + vall < [[vall + vl

(recall the parallelogram)



Inner products: Angle

We can also use the inner product to measure the angle between two vectors
v and w (= their inner product adjusted for their lengths):

t"t Wi
iw=]
(ﬁViZ )%(iwiz )%

ju] j==]

1
and Y2= {1] is found through:

V'W
Cos 6 = = (CoS@ =
vl ]l

0
Example: The angle between Y1 = [ 1

vicve=1 vi=1 vl =2 cos § = = 0.707

1
1-2

It cos P =0 (=90°), two vectors are orthogonal (at right angles) to one another



Connectionism: A single unit

inner product (u)

weight

input vector (v) .
vector (w) iInner

(VF (V[) . q,; product (u)
le Pz .o lwn @

weight vector (w)

The activation of unit u computes the inner productofwandv:u=w - v

The output of unit u effectively indicates how close an input vector v is to the weight
vector w (close — +; near orthogonal — near O; opposite — -)

A unit thus effectively divides the input space into two parts: a part to which its
response is positive and a part where to which its response is negative



Matrices

* To describe a full layer, we need the concept of a m x n matrix—an array of real numbers:

345 300 10 —1
001

* Matrices, like vectors, can be multiplied by a scalar:
345 12 15
IM=311 01 30 3
e Two matrices with the same number of rows and columns can be added:
5 -10 2 2 47
4 1 -1 510

3 4
1 01

M+N-[



Multiplying a Vector by a Matrix

* A mxnmatrix W can be multiplied by an n-component vector v, yielding
an m-component vector u, consisting of the inner products between
vector v and each of the row vectors wi of W:

i!h
component

O

i th
row

W

D

R 3 9
3 E
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\4

3-14 4:0+ 5-2
1-140-0+ 1-2

-

345
u=Wv=11 01 [°=

* From another perspective, U is linear combination of the column vectors
wj of W with the components of v as coefficients:

u

v1w1+ e o 0

+ VW,

3
1

5
1

4 13

u= V|W1+ V2W2+ ViW3 =



Vector-Matrix Multiplication as a Function

* The space spanned by the column vectors of a matrix is the column
space, and the vector u = Wv is in the column space of W

* Matrix W is thus effectively a function from one set of vectors to another

 Thatis, if we consider an n-dimensional vector space V (the domain) and
an m-dimensional vector space U (the range), multiplication by a fixed
matrix W is a function from V to U:

v W u

W:v —=u



Connectionism: A single layer

Inputs

u
w w . . L @
mi m2 wmn

 Each unit ui has its own weight vector wi, and the activation of unit uiis the inner
product of wi and input vector v: ui = wi - v

* |t we define a matrix W that has weight vectors wi as its row vectors, the activation
of all units uiis neatly given as: u = Wv

* Each unit ui matches its weight vector wi to the input vector v



Connectionism: Multiple layers

In a multilayer network, the output vector
u= Mz depends on z=Nv

Hence, the output of the network relates to
the input through u = M(Nv)

<D ZPN=PR=p=

Using matrix multiplication:

M N p /A Inner product

- --II f -| | | 345 1/2] [3+8=-5)(6+0+5)] [6 11
M n;n; - ng| = |Mn; Mn; - Mng 101 210l =|(1+0-1) (2+0+1)|=|0 3
! _Ll | | _| ’ | 01,2) |-1|1 (0+2-2) (0+0+2) 0 2

we can rewrite it as a single layer system u = M(Nv) = (MN)v = Pv

This is why we use a non-linear (e.g., logistic) transformation on the inner products
as outputs of z and u, thereby effectively modelling decisions



Linear versus Nonlinear systems

A function y = f{x) describes a linear system, if for any inputs x1 and x2, the following
equations hold:

f(cx) = cf(x)
f(x1 + x2) = f(x1) + (x2)

Linear systems are easy to analyse; once we know its responses to a set of inputs forming
the basis of the input space, we can compute its response to any other input

Nonlinear systems are simply all systems for which these equations do not hold, and are
therefore more difficult to analyse



In sum ...
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