Connectionist Language Processing

Lecture 10: Situation Modeling using Microworlds

Matthew W. Crocker crocker@coli.uni-sb.de
Harm Brouwer brouwer@coli.uni-sb.de

A Neurocomputational Model

Sentence comprehension

"charlie plays soccer"

play(charlie, soccer)

Two requirements

A richer representational scheme

We need to *represent* that Charlie is outside, on a field, playing with a ball, and with others, etc.

Knowledge about the world

We need to *know* that Charlie is outside on a field, because soccer is typically played on a field, with a ball, with others, etc.

> Solution: the Distributed Situation Space (DSS) model

Distributed Situation Space (DSS)

- > A non-symbolic, distributed representational scheme for meaning
- > Situations are represented as vectors in a high-dimensional space called "situation-state space"
- > DSS vectors capture dependencies between situations, allowing for 'world knowledge'-driven *direct inference*
- > To encode all world knowledge, DSS vectors are derived from observations of *states-of-affairs* (situations) in a *microworld*

Introducing... Golden & Rumelhart

DSS—The main idea

Take a snapshot of the world ("a sample") at many different times, and for each snapshot write down the *full state-of-affairs* in the world

Next: extract regularities—world knowledge—from the full set of observations, and construct meaning representations (vectors) that encode this world knowledge

Problem: How to record full state-of-affairs in the world for each snapshot?

> use a confined *microworld* (which limits the scope of the world)

Defining a Microworld

A *state-of-affairs* (observation) in a microworld is defined in terms of *atomic events* that can be assigned a state (i.e., they can be *the case* or not *the case*)

Class	Variable	Class members (concepts)	#	Event name		#
People	p	charlie, heidi, sophia	3	play(p,g)	$3 \times 3 =$	9
Games	g	chess, hide&seek, soccer	3	play(p,t)	$3 \times 3 =$	9
Toys	t	puzzle, ball, doll	3	win(p)		3
Places	x	bathroom, bedroom, playground, street	4	lose(p)		3
Manners of playing	$m_{ m play}$	well, badly	2	place(p,x)	$3 \times 4 =$	12
Manners of winning	$m_{ m win}$	easily, difficultly	2	$manner(play(p), m_{\mathrm{play}})$	$3 \times 2 =$	6
Predicates	_	play, win, lose, place, manner	5	$manner(win,\!m_{win})$		2
					Total	44

More specifically, states-of-affairs are combinations of these 44 atomic events Example—"heidi loses at chess": $play(heidi, chess) \land lose(heidi)$

> 2^44 (≈10^13) possible situations, but world knowledge precludes many

Microworld knowledge

World knowledge enforces constraints on event co-occurrence. Some examples:

Personal characteristics—each person has a specialty, a preferred toy, and some persons frequent specific places

Games and toys—each game/toy can only be played (with) in specific places, and has a number of possible player configurations; soccer is played with a ball

Being there—everybody is exactly at one place; if hide&seek is played in the playground, all players are there; all chess players are in the same place

Winning and losing—only one can wine, and one cannot win and lose; if someone wins, all other players lose

Note: there are *hard* (being there) and *probabilistic* (preferences) constraints

Situation-state space

Many samples of microworld observations constitute a "situation-state space"

Rows represent observations (states-of-affairs)

Columns represent situation vectors for atomic events:

$$ec{v}(a) = (ec{v}_1(a), \dots, ec{v}_n(a))$$
 (a point in situation space)

Using (fuzzy) logic, *complex event* vectors can be derived:

$$\vec{v}(\neg a) = 1 - \vec{v}(a)$$

$$\vec{v}(a \wedge b) = \vec{v}(a)\vec{v}(b)$$
 where $\vec{v}(a \wedge a) = \vec{v}(a)$

which gives functional completeness:

$$\vec{v}(a \uparrow b) = \vec{v}(\neg \vec{v}(a \land b))$$

Situation vectors

Situation vectors encode events by means of co-occurrence probabilities

Prior belief in atomic event *a* (= estimate of its probability):

$$B(a) = \frac{1}{k} \sum_{i} \vec{v}_i(a) \approx Pr(a)$$

Prior conjunction belief of atomic events a and b:

$$B(a \wedge b) = \frac{1}{k} \sum_{i} \vec{v}_i(a) \vec{v}_i(b) \approx Pr(a \wedge b)$$
 where $B(a \wedge a) = B(a)$

Prior conditional belief of atomic event a given b:

$$B(a|b) = \frac{B(a \wedge b)}{B(b)} \approx Pr(a|b)$$

Critically, either a and/or b can be atomic or complex events

 $B(a|b) \approx Pr(a|b)$ means $\vec{v}(b)$ encodes **b** and all that depends upon **b**; this allows 'world knowledge'-driven inference

Quantifying "comprehension"

Beyond conditional belief—how much is *a* 'understood' from *b*?

If a is understood to be the case from b, the conditional belief B(a|b) should be higher than the prior belief B(a): knowing b increases belief in a

If a is understood not to be the case from b, the conditional belief B(a|b) should be lower than the prior belief B(a): knowing b decreases belief in a

$$comprehension(a,b) = \begin{cases} \frac{B(a|b) - B(a)}{1 - B(a)} & \text{if } B(a|b) > B(a) \\ \frac{B(a|b) - B(a)}{B(a)} & \text{otherwise} \end{cases}$$

- $-1 \le comprehension(a,b) \le +1$:
 - +1 indicates perfect positive comprehension: b took away all uncertainty in a
 - -1 indicates perfect negative comprehension: b took away all certainty in a

Comprehension scores

The higher B(a) the more difficult it is to *increase certainty* in a, and the lower B(a) the more difficult it is to *increase uncertainty* in a

Map of the World

Zooming in: Observation sampling

Q: how to efficiently sample **k** observation from 2^44 possibilities, such that *no observation* violates world knowledge and the set of samples reflects the probabilistic nature of the world?

> inference-driven, incremental sampling algorithm using three-valued logic (0.5: Unknown)

Step 0—start with a completely undefined observation (all n atomic event states set to 0.5);

Step 1—pick a random, undecided atomic event *e*;

Step 2—set e to be the case (1) or not (0) on basis of its probability given the observation so far;

Step 3—draw all inferences that follow from deciding the state of event e;

- (a) randomly pick the next, undecided event e;
- (b) construct two observations: s1 in which e' is the case (1), and s2 in which it is not (0)
- (c) check for s1 and s2 if they violate any hard world knowledge constraints:
 - i. both s1 and s2 are felicitous: state of e' cannot be inferred (and remains 0.5)
 - ii. only *s1* is felicitous: infer *e'* to be the case (its state is set to 1)
 - iii. only s2 is felicitous: infer e' not to be the case (its state is set to 0)
 - iv. both s1 and s2 are infelicitous: prior observation is infelicitous (restart from step 0)
- (d) repeat (b) until it has been tried to infer each undecided event

Step 4—repeat step 1 until there are no more undecided events

Prize of incrementality: need to deal with undecidedness in checking world knowledge violations

DSS vectors—Plug and Play?

Reduced situation vectors

Problem: Situation vectors are 25K-dimensional, and are hence far larger than the thematic-role assignment vectors (300D) in our neurocomputational model

> justified if belief values estimated from original and reduced vectors are similar

Correlating belief values

Comparing world maps

The "difference" world

Zooming in: Reducing dimensionality

Q: How to go from a $m \times n$ (25K x 44) to a $k \times n$ (k=150) situation-state space? > employ a competitive layer algorithm to classify the m observations into k classes

Step 0—define a $k \times n$ matrix with all cells set to 0.5, and assign each row a bias b=1;

Step 1—for each observation m_i in the original situation-state space, repeat:

(a) determine the cityblock distance between row m_i and each row k_i :

$$dist(m_i, k_j) = \sum |m_{i,c} - k_{j,c}|$$
 where c is a column index

(b) determine row k_{W} with the shortest, biased distance to m_{i} :

$$k_w = argmin_j(dist(m_i, k_j) - b_j)$$

(c) and update row k_{W} by means of

$$\Delta k_w = \alpha (m_i - k_w)$$
 where α is a learning rate parameter

(d) next, decrease the bias b_{W} of row k_{W} (to a minimum of 1):

$$\Delta b_w = \beta b_w (1 - bw)$$
 where β is a learning rate parameter

(d) and, increase the bias of all other rows $k_i \neq k_w$:

$$\Delta b_j = \beta b_j$$

Step 2—repeat step 1 for N training epochs

From sentences to vectors

We want to train the model to map sequences of words constituting a sentence onto the DSS vector representing the meaning of this sentence

Q: How to go from sentences to DSS vectors?

Path: sentence -> propositional logic form -> DSS vector

Defining a Microlanguage—Lexicon

Class	Words	
proper nouns	charlie, heidi, sophia	
(pro)nouns	$boy,\ girl,\ someone,\ chess,\ hide-and-seek,\ soccer,\ football,$	
	game, puzzle, ball, doll, jigsaw, toy, ease, difficulty,	
	$bathroom,\ bedroom,\ playground,\ shower,\ street$	20
verbs	wins, loses, beats, plays, is, won, lost, played	8
adverbs	well, badly, inside, outside	
prepositions	with, to, at, in, by	5
	Total	40

Defining a Microlanguage—Grammar

```
\mathbf{S}
                         \rightarrow N<sub>n</sub> VP<sub>n,v</sub> APP<sub>n,v</sub>
                                                                                                                                          [Ngame] [Manner] [Place] | PPtoy [Place] | Place PPtoy
                                                                                                                                          [PP<sub>manner</sub>] [PP<sub>game</sub>] [Place] | PP<sub>game</sub> PP<sub>manner</sub>| Place PP<sub>game</sub>
                                                                                                           APP person, win
                                 charlie | heidi | sophia | someone | boy | girl
                                                                                                           APP_{\tt person,\ lose}
                                                                                                                                          [PPgame] [Place] | Place PPgame
                                 chess | hide-and-seek | soccer | football | game
N_{game}
                                                                                                                                          [Manner] [PP<sub>person</sub>] [Place]
                                                                                                           APPgame, play
                                 puzzle | ball | doll | jigsaw | toy
N_{toy}
                                                                                                                                          [PP<sub>manner</sub>] [PP<sub>person</sub>] [Place]
                                                                                                          APPgame, win
VP<sub>person, play</sub>
                                 plays
                                                                                                           APPgame, lose
                                                                                                                                          [PP<sub>person</sub>] [Place]
                                 wins | beats Nperson
VP<sub>person, win</sub>
                                                                                                                                          [PP<sub>person</sub>] [Place] | Place PP<sub>person</sub>
                                                                                                           APP<sub>toy, play</sub>
VP<sub>person, lose</sub>
                                 loses | loses to N<sub>person</sub>
                                                                                                           Manner
                                                                                                                                          well | badly
VP<sub>game, play</sub>
                                 is played
                                                                                                           Place
                                                                                                                                          inside | outside | PP<sub>place</sub>
VP<sub>game, win</sub>
                                 is won
                                                                                                           PP_{place}
                                                                                                                                          in bathroom | in shower | in bedroom | in street | in playground
VPgame, lose
                                 is\ lost
                                                                                                                                          by N<sub>person</sub>
                                                                                                           PP_{person}
VP<sub>toy, play</sub>
                                 is played with
                                                                                                           PP_{game}
                                                                                                                                          at Ngame
                                                                                                           PP_{toy}
                                                                                                                                          with N_{tov}
                                                                                                           PP<sub>manner</sub>
                                                                                                                                          with ease | with difficulty
```

> this grammar generates 13.556 different sentences

Defining a Microlanguage—Semantics

charlie plays chess play(c, chess)

chess is played by charlie play(c, chess)

 $girl\ plays\ chess$ $play(h,\ chess)\ \lor\ play(s,\ chess)$

 $heidi\ plays\ game$ play(h, chess) \lor play(h, hide&seek) \lor play(h, soccer)

heidi~plays~with~toy play(h, puzzle) \lor play(h, ball) \lor play(h, doll)

 $sophia\ plays\ soccer\ well$ $play(s, soccer) \land manner(play(s), well)$

 $sophia\ plays\ with\ ball\ in\ street$ play(s, ball) \land place(s, street)

 $someone\ plays\ with\ doll$ $play(c, doll) \lor play(h, doll) \lor play(s, doll)$

charlie plays $play(c, chess) \lor play(c, hide&seek) \lor play(c, soccer)$

∨ play(c, puzzle) ∨ play(c, ball) ∨ play(c, doll)

Logic forms —> Situation vectors

The situation vectors of *atomic events* are the columns of the situation-state matrix. The situation vectors of *complex events* can be found through *fuzzy logic*:

$$\vec{v}(\neg a) = 1 - \vec{v}(a)$$

$$\vec{v}(a \wedge b) = \vec{v}(a)\vec{v}(b)$$
 where $\vec{v}(a \wedge a) = \vec{v}(a)$

Which gives us $\vec{v}(a \uparrow b) = \vec{v}(\neg \vec{v}(a \land b))$ and hence *functional completeness*:

$$\vec{v}(a \lor b) = \vec{v}(\vec{v}(a \uparrow a) \uparrow \vec{v}(b \uparrow b))$$

$$\vec{v}(a \to b) = \vec{v}(a \uparrow \vec{v}(b \uparrow b)) = \vec{v}(a \uparrow \vec{v}(a \uparrow b))$$

$$\vec{v}(a \veebar b) = \vec{v}(\vec{v}(a \uparrow \vec{v}(a \uparrow b)) \uparrow \vec{v}(b \uparrow \vec{v}(a \uparrow b)))$$

> allows to derive vectors for events of arbitrary logical complexity

DSS vectors—Plug and Play!

What does the model 'understand'?

Given a sentence describing an atomic or complex event e, the model will construct an output vector $\vec{v}(e')$ that is at best an approximation of $\vec{v}(e)$

- > how well $\vec{v}(e')$ approximates $\vec{v}(e)$ is quantifiable through comprehension(e,e') [if the model has 'understood' e, the conditional belief B(ele') should be higher than the prior belief B(e), yielding a positive comprehension score, and vice versa; moreover if B(ele') = 1 iff e = e']
- > we can also probe the state-of-affairs as 'understood' by the model, by computing comprehension(a,e') for any other atomic or complex event \boldsymbol{a} [for instance, for all the atomic events in the microworld]

Note—we can do both of these things after the processing of each word, and hence investigate how a state-of-affairs unfolds on word-by-word basis

Putting it all together ...

```
model:all_sents> dssScores basic_events "charlie plays chess'
 **** Sentence: charlie plays chess
 **** Semantics: play(charlie,chess)
***
 ***
                                                                                    plays
                                                                                                                   chess
 ***
 ***
                                                                   -0.01071
                                                                                   +0.07622
                                                                                                  +0.72407 +0.80029
 **** play(charlie,chess)
                                                                                                    +0.72407
                                                                                                                                   play(charlie,chess)
 **** play(charlie, hide_and_seek)
                                                                                                                                    olay(charlie,hide_anolay(charlie,soccer)
 **** play(charlie, soccer)
 **** play(heidi,chess)
                                                                                                    +0.41746
                                                                    +0.00486
                                                                                                                                   play(heidi,chess)
**** play(heidi,hide_and_seek)
**** play(heidi,soccer)
**** play(sophia,chess)
                                                                                                                                   play(sophia, chess)
                                                                                                   +0.35767
                                                                                                                                  play(sophia, chess)
play(sophia, hide_and_seek)
play(sophia, soccer)
play(charlie, puzzle)
play(charlie, ball)
play(charlie, doll)
play(heidi, puzzle)
play(heidi, ball)
play(heidi, doll)
**** play(sophia, hide_and_seek)
 **** play(sophia, soccer)
 **** play(charlie,puzzle)
                                                                    +0.04140
**** play(chartie, puzzte

**** play(charlie, ball)

**** play(charlie, doll)

**** play(heidi, puzzte)

**** play(heidi, ball)

**** play(heidi, doll)
                                                                    +0.11227
                                                                    +0.04865
                                                                                                    +0.08060
                                                                                                                                   play(sophia, puzzle)
 **** play(sophia,puzzle)
**** play(sophia,ball)
**** play(sophia,doll)
**** win(charlie)
**** win(heidi)
                                                                    +0.02611
                                                                                                                                   win(charlie)
                                                                                                    +0.19446
**** win(sophia)
                                                                                                                                   lose(charlie)
 **** lose(charlie)
                                                                                                   +0.05884
 **** lose(heidi)
                                                                                                                                   lose(heidi)
 **** lose(sophia)
                                                                                      0.00003
                                                                                                   +0.06213
                                                                                                                                   lose(sophia)
**** place(charlie,bathroom)

**** place(charlie,bedroom)

**** place(charlie,playground)

**** place(charlie,street)
                                                                                                                                   place(charlie, bedroom)
                                                                                                   +0.71078
                                                                    +0.01725
                                                                                                                                  place(charlie,playgro
place(charlie,street)
place(heidi,bathroom)
                                                                    +0.07566
 **** place(heidi,bathroom)
                                                                    +0.02099
**** place(heidi,bedroom)

**** place(heidi,playground)

**** place(heidi,street)

**** place(sophia,bathroom)
                                                                                                                                   place(heidi,bedroom)
                                                                    +0.00981
                                                                                                   +0.45972
                                                                    +0.03582
                                                                                                                                   place(sophia, bedroom)
**** place(sophia,bedroom)
                                                                                                    +0.43567
                                                                    +0.01669
 **** place(sophia,playground)
 **** place(sophia, street)
**** manner(play(charlie),well)

**** manner(play(charlie),badly)

**** manner(play(heidi),well)

**** manner(play(heidi),badly)
                                                                                                   +0.05307
                                                                                                                                  manner(play(charlie),well)
                                                                                                                                  manner(play(charlie),badly)
manner(play(heidi),well)
                                                                                                   +0.05926
                                                                    +0.00267
                                                                                                    +0.01330
                                                                                                                                  manner(play(heidi), badly)
manner(play(sophia), well)
manner(play(sophia), badly)
manner(win, easily)
                                                                                                   +0.01801
                                                                    +0.00191
 **** manner(play(sophia),well)
 **** manner(play(sophia),badly)
 **** manner(win,easily)
                                                                                                   +0.03096
 **** manner(win, difficultly)
                                                                                                                                  manner(win, difficultly)
                                                                                    +0.00409
                                                                                                   +0.01167
                                                                                                                    +0.01576
 model:all_sents>
```

Discussion

- > The DSS model provides a powerful framework for simulating rich situation model representations
- > We have employed the DSS representations in a model of interpretation-level Surprisal
- > We have also successfully used DSS vectors in a model of language production
- > The use of DSS vectors paves way towards modeling pragmatic phenomena