Computational Psycholinguistics

Neural Networks Review

Marshall R. Mayberry

Computerlinguistik Universität des Saarlandes

Neural network architecture

- The activation of a unit *i* is represented by the symbol a_i .
- The extent to which unit *j* influences unit i is determined by the weight w_{ii}
- The input from unit *j* to unit *i* is the product: a_{j *} w_{ij}
- For a node *i* in the network:

$$netinput_i = \sum_i w_{ij}a_j$$

The output activation of node *i* is determined by the activation function, e.g. the logistic:

$$a_i = \sigma(netinput_i) = \frac{1}{1 + e^{-net_i}}$$

Learning with the Sigmoid activation function

- Networks with linear activation functions:
 - □ have mathematically well-defined learning capacities (linear algebra)
 - □ they are known to be limited in the kinds of problems they can solve
- The logistic, or sigmoid, function is:
 - □ Nonlinear: more powerful
 - □ More neurologically plausible
 - Less well-understood, more difficult to analyse mathematically

10

Backpropagation of Error

(a) Forward propagation of activity:

$$net_{out} = \sum w_{oh} \cdot a_{hidden}$$
$$a_{out} = f(net_{out})$$

(b) Backward propagation of error:

$$\operatorname{err}_{hidden} = \sum w_{oh} \cdot \delta_{out}$$
$$\delta_{hidden} = f'(\operatorname{net}_{hidden}) \cdot \operatorname{err}_{hidden}$$

Example of Backpropagation

- Consider the following network, containing a single hidden node
- Calculate the weight changes for both layers of the network, assuming learning rate $\varepsilon = 0.3$, inputs 0.4 and 0.7, and targets 0.8 and 0.2

$$\Delta w_{ij} = \varepsilon \delta_i a_j$$

For output nodes :
$$\delta_k = \sigma'(net_k)(t_k - a_k) = a_k(1 - a_k)(t_k - a_k)$$

For hidden nodes :
$$\delta_i = \sigma'(net_i) \sum_k \delta_k w_{ki} = a_i(1 - a_i) \sum_k \delta_k w_{ki}$$

because $\sigma'(net_k) = a_i(1 - a_k)$

$$\delta_i = \sigma'(net_i) \sum_k \delta_k w_{ki} = a_i (1 - a_i) \sum_k \delta_k w_k$$

because $\sigma'(net_i) = a_i (1 - a_i)$

Forward and Backpropagation

