
Computational Psycholinguistics

Lecture 9: Learning in
Neural Networks

Marshall R. Mayberry

Computerlinguistik
Universität des Saarlandes

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 2

Neural network architecture
 The activation of a unit i is

represented by the symbol ai.
 The extent to which unit j influences

unit i is determined by the weight wij

 The input from unit j to unit i is the
product: aj * wij

 For a node i in the network:

 The output activation of node i is
determined by the activation
function, e.g. the logistic:

!

netinputi = wija j

j

"

!

ai ="(netinputi) =
1

1+ e
#neti

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 3

2-D Representation of Boolean Functions

 We can visual the relationship between inputs (plotted in 2-D space)
and the desired output (represented as a line dividing the space):

(1,1)

(1,0)(0,0)

(0,1) (1,1)

(1,0)(0,0)

(0,1)

AND

(1,1)

(1,0)(0,0)

(0,1)

XOR

(1,1)

(1,0)(0,0)

(0,1)

OR

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 4

“Perceptrons” [Rosenblatt 1958]

 Perceptron: a simple, one-layer, feed-forward network:

 Binary threshold activation function:

 Learning: the perceptron convergence rule
 Two parameters can be adjusted:

 The threshold
 The weights

aout

ain

w

!

net
out

= w " a
in

in

#

!

a
out

=1 if net
out

> "

 = 0 otherwise

!

The error, " = (t
out
a

out
)

$% = #&"

$w = &"a
in

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 5

Gradient descent

 Let’s define the error on the outputs
as: Ep=(tout-aout)2

 Recall: aout = ∑w ain

 This means Ep is always positive
 For a single-layer net, if we consider one

weight, holding the others constant:
 Plot Error versus varying the weight

 The lowest point on the curve, represents
the minimum error possible for:
 For pattern p
 By varying a given weight w

 Learning: the network is always at some point on the error curve
 Use the slope of the curve to change the weights in the right direction
 If slope is positive, then decrease the weight
 If slope is negative, increase the weight

Weight

Er
ro

r (
E

p)

Optimum weight

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 6

Visualising the error „surface“

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 7

Gradient descent continued

 We need calculus to allow us to determine how the error varies when a
particular weight is varied:

!

"w = #$
%E

%w

"w = #$
%(tout # aout)

2

%w

"w = #$
%[tout # f (w & ain

in
')]

2

%w

"w = 2$[tout # f (w & ain
in

')] & (f (w & ain
in

') & ain

"w = 2$)F
*
ain

!

" = (t
out
a

out
)

F* = slope of the activation function

$

%
&

'

(
)

Slope: Rate of change of E, with respect to w

Error = (tout - aout)2

Derivative of the
activation function wrt w,

i.e. its slope

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 8

Gradient descent and the delta rule

 The perceptron convergence rule:
 Our revised learning rule, based on gradient descent is:

 where F* is the slope of the activation function
 If the activation function is linear, the slope is constant:

 where k is a constant representing the learning rate ε and slope
 This corresponds to the original Delta rule:

 It is straightforward to calculate
 Performs gradient descent to the bottom of the error curve
 ∆w is proportional to (tout - aout), so changes get smaller as error is reduced
 In one-layer networks, there is a single minimum: gradient descent

learning is therefore guaranteed to find a solution, if one exists.

!

"w = #$ a
in

!

"w = 2#$F *
a
in

!

"w = k# a
in

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 9

Learning with the Sigmoid activation function

 Networks with linear activation functions:
 have mathematically well-defined learning capacities (linear algebra)
 they are known to be limited in the kinds of problems they can solve

 The logistic, or sigmoid, function is:
 Nonlinear: more powerful
 More neurologically plausible
 Less well-understood, more difficult to analyse mathematically

 Recall:

!

a
i
="(net

i
) =

1

1+ e
#net

i

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 10

Behaviour of the logistic function

 Deriving the slope of the logistic
function:

 The Delta rule, assuming the
logistic function:

!

a
out

="(net
out
) =

1

1+ e
#net

out

F
*

="$(net
out
) = a

out
(1# a

out
)

!

"w = 2# $F *
a
in

or

"w = 2#(t
out
% a

out
)a

out
(1% a

out
)a

in

aout

a o
ut

(1
-a

ou
t)

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 11

Training a network with Gradient Descent

 The training phase involves
 Presenting an input pattern, and computing the output for the network

using the current connection weights: aout = f(∑in wout,in x ain)
 Calculating the error between the desired and the actual output (tout - aout)
 Using the Delta rule (appropriate for the logistic activation function):

 One such cycle is called a sweep
 A sweep through each pattern is called an epoch
 We can define the global error of the network, as the average error

across all input patterns, k:
 One common measure is the

square root of mean error or else
 root mean square (rms)

 Squaring avoids positive and negative errors cancelling each other out

!

"w = #(t
out
$ a

out
)a

out
(1$ a

out
)a

in

!

rms error =

(
r
t
k
"

r
o

k
)

k

#
2

k

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 12

Training: an example

 Consider the simple feedforward network:
 Assume an input pattern: 1 1
 Assume a learning rate of 0.1
 Assume a sigmoid activation
 Desired output is: 1

 Determine the weight changes for 1 sweep:

a2

a0 a1

0.75 0.5

a2

a0 a1

0.7537 0.5037

!

a2 = f (1" 0.75 +1" 0.5) = 0.78

#2 = (t $ a2) % f (0.78) = 0.23" 0.16 = 0.037

&w20 = '#2o0 = 0.1" 0.037 "1= 0.0037

&w21 = '#2o1 = 0.1" 0.037 "1= 0.0037

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 13

The dynamics of weight changes

 Learning rate: predetermined constant

 The error: large error = large weight change

 The slope of the activation function:
 The derivative of the logistic is largest for netinputs around 0, and for

activations around .5
 Small netinputs co-occur with small weights
 Small weights tend to occur early in training
 The result: bigger changes during early stages of learning

 Less resilience in older network: harder to teach new tricks!

 The momentum:
 This parameter determines how much of the previous weight change

affects the current weight change

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 14

Calculating Error

 Consider a simple network for learning the AND operation

 After training (1000 sweeps, 250 epochs), we can calculate the global
(RMS) error as follows:

 Observe how error steadily falls during training

0,325RMS:
0,2010,55211 1
0,1120,33401 0
0,0880,29700 1
0,0220,14700 0

(t-o)^2OutputTargetInput

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 15

Calculating Global RMS Error

Calculation of Global RMS error: for (auto1), ch. 5, Plunkett & Elman

pattern 1 0,321 0,196 0,255 0,264 1,000 0,000 0,000 0,000

pattern 2 0,227 0,612 0,169 0,211 0,000 1,000 0,000 0,000

pattern 3 0,287 0,188 0,342 0,276 0,000 0,000 1,000 0,000

pattern 4 0,296 0,207 0,300 0,268 0,000 0,000 0,000 1,000

Error (t-o)

0,679 -0,196 -0,255 -0,264

-0,227 0,388 -0,169 -0,211

-0,287 -0,188 0,658 -0,276

-0,296 -0,207 -0,3 0,732

Error^2

0,461041 0,038416 0,065025 0,069696 0,634178

0,051529 0,150544 0,028561 0,044521 0,275155

0,082369 0,035344 0,432964 0,076176 0,626853

0,087616 0,042849 0,09 0,535824 0,756289

RMS Error 0,757046

Observed Output Target

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 16

Intermediate Summary

 Learning rules:
 Perceptron convergence rule
 Delta rule

 Depends on the (slope of the) activation function
 For one-layer networks using these rules:

 A solution will be found, if it exists
 How do we know if the network has learned successfully?

 Error:
 For learning, we use (tout - aout) to change weights
 To characterise the performance of the network as a whole, we need a

measure of global error:
 Across all outputs
 Across all training patterns

 One possible measure is RMS
 Another is entropy: doesn’t really matter, since we only need to know if

performance is improving or deteriorating on a relative basis

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 17

Solving XOR with hidden units
 Consider the following network:

 two-layer, feedforward
 2 units in a “hidden” layer
 Hidden and output units are threshold units:

 Representations at hidden layer:

 Problem: current learning rules cannot be used for hidden units:
 Why? We don’t know what the “error” is at these nodes (no target)
 “Delta” requires that we know the desired activation

O

h1 h2

+1 +1

i1 i2

+1+1 -1 -1

!

" =1

h2h1

0001 1

1100 1

1011 0

0000 0

TargetHiddenInput

!

"w = 2#$F *
a
in

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 18

Backpropagation of Error

!

(a) Forward propagation of activity :

net out = woh " ahidden#
aout = f (net out)

!

(b) Backward propagation of error :

errhidden = woh " #out$
#hidden = % f (net hidden) " errhidden

i1

i2

i3

h1

h2

h3

o1

o2

o3

i1

i2

i3

h1

h2

h3

o1

o2

o3

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 19

Learning in Multi-layer Networks

 The generalised Delta rule:

 Multi-layer networks can, in principle, learn any mapping function:
 Not constrained to problems which are linearly separable

 While there exists a solution for any mapping problem,
backpropagation is not guaranteed to find it
 Unlike the perceptron convergence rule

 Why? Local minima:
 Backprop can get trapped here
 Global minimum (solution) is here
 Not real problem in practice

!

"wij = #$ia j

For output nodes : For hidden nodes :

$k = % & (netk)(tk ' ak) $i = % & (neti) wki

k

($k

where, % & (neti) = ai(1' ai)

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 20

Example of Backpropagation

 Consider the following network, containing
a single hidden node

 Calculate the weight changes for both layers
of the network, assuming learning rate ε = 0.1

 and targets of: 1 1

a2

1 1

0.5 0.1

a3 a4

-0.3 0.7

!

The generalised Delta rule :

"wij = #$ia j

For output nodes :

$k = % & (netk)(tk ' ak)

For hidden nodes :

$i = % & (neti) $kwki

k

(

where, % & (neti) = ai(1' ai)

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 21

Forward and Backpropagation

 = 0.1·0.13·0.65 ≈ 0.008Δw32 = 0.1·0.1·0.65 ≈ 0.007Δw42

 = 0.1·0.007·1 ≈ 0.0007Δw20 = 0.1·0.007·1 ≈ 0.0007Δw21

a2

1 1

a3 a4

1 1

-0.3 w32 0.7 w42

0.1 w210.5 w20

2 ≈ 0.65a2a = σ(1·0.5+1·0.1)

3 ≈ 0.45a
3a = σ(-0.3·0.65) 4 ≈ 0.60a4a = σ(0.7·0.65) ≈ 0.13

3δ = σ′(0.45)(1-0.45)
≈ 0.1

4δ = σ′(0.60)(1-0.60)

δ2 = σ′(0.65)(-0.3·0.13+0.7·0.1)
≈ 0.007

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 22

The Family Tree Problem

 Family trees encode more complex relationships:

 24 people, 12 relationships
 Mother, daughter, sister, wife, aunt, niece (+ masculine versions)

 Training: trained on 100 of 104 possible relationships
 Learned the other 4: e.g. Victoria’s son is Colin

Christopher=Penelope Andrew=Christine

Victoria=JamesMargaret=Arthur Jennifer=Charles

Colin Charlotte

Roberto=Maria Pierro=Francesca

Lucia=MarcoGina=Emilio Angelo=Tomaso

Alfonso Sophia

English

Italian

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 23

What does the Network Learn

 E.g. Victoria’s son is Colin:
 Input: Victoria & Son
 Output: Colin

 In a single-layer network:
 Victoria would activate all the people Victoria was (known to be) related to
 Son would activate all people who are (known to be) sons

 Colin would be partially activated, because he is James’ son
 But Colin would not have very high activation

 James and Arthur are both sons, and related to Victoria

 A solution to this problem requires deduction:
 Transitive inference:

 Victoria’s husband is James AND James’ son is Colin
 THEREFORE Victoria’s son is Colin

 Thus the structure of the tree is learned from exemplars

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 24

Learning family tree relationships

 The network architecture, using hidden units:

 The learned encoding
of people:

1. Active for English

2. Active for older
generation

3. Active for the leaves
4. Encodes right side
5. Active for Italian
6. Encodes left side

Local encoding
of person2

Learned distributed
encoding of person2

Learned distributed
encoding of person1

Learned distributed
encoding of relation

Input: local
encoding of person1

Input: local
encoding of relation

12 Hidden Units

24 Units 12 Units

6 Units

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 25

Some comments

 Single layer networks (perceptrons)
 Can only solve problems which are linearly separable
 But a solution is guaranteed by the perceptron convergence rule

 Multi-layer networks (with hidden units)
 Can in principle solve any input-output mapping function
 Backpropagation performs gradient descent of the error surface
 Can get caught in a local minimum
 Cannot be guaranteed to find the solution

 Finding solutions:
 Manipulate learning rule parameters: learning rate, momentum
 Brute force search (sampling) of the error surface to find a set of starting

position in weight space
 Computationally impractical for complex networks

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 26

Biological plausibility

 Backpropagation requires bi-directional signals
 Forward propagation of activation
 Backward propagation of error
 Nodes must “know” the strengths of all synaptic connections

to compute error: non-local
 Axons are uni-directional transmitters
 Possible justification:

 Backpropagation explains what is learned,
 Not how it is learned

 Network architecture:
 Successful learning crucially depends on the number of hidden units
 There is no way to know, a priori, what that number is

 Another solution: use a network with a local learning rule
 E.g. Hebbian learning

