Computational Psycholinguistics

Lecture 9: Learning in Neural Networks

Marshall R. Mayberry

Computerlinguistik Universität des Saarlandes

Neural network architecture

- The activation of a unit *i* is represented by the symbol a_i .
- The extent to which unit *j* influences unit i is determined by the weight w_{ii}
- The input from unit *j* to unit *i* is the product: a_{j *} w_{ij}
- For a node *i* in the network:

$$netinput_i = \sum_i w_{ij}a_j$$

The output activation of node *i* is determined by the activation function, e.g. the logistic:

$$a_i = \sigma(netinput_i) = \frac{1}{1 + e^{-net_i}}$$

2-D Representation of Boolean Functions

We can visual the relationship between inputs (plotted in 2-D space) and the desired output (represented as a line dividing the space):

"Perceptrons" [Rosenblatt 1958]

Perceptron: a simple, one-layer, feed-forward network:

$$\operatorname{net}_{out} = \sum_{in} w \cdot a_{in}$$

Binary threshold activation function:

$$a_{out} = 1$$
 if $net_{out} > \theta$
= 0 otherwise

Learning: the perceptron convergence rule

- □ Two parameters can be adjusted:
 - + The threshold

The error,
$$\delta = (t_{out} - a_{out})$$

 $\Delta \theta = -\varepsilon \delta$
 $\Delta w = \varepsilon \delta a_{in}$

Gradient descent

□ If slope is negative, increase the weight

Gradient descent continued

We need calculus to allow us to determine how the error varies when a particular weight is varied:

Gradient descent and the delta rule

The perceptron convergence rule: $\Delta w = \varepsilon \delta a_{in}$ Our revised learning rule, based on gradient descent is:

$$\Delta w = 2\varepsilon \delta F^* a_{in}$$

 \Box where F^* is the slope of the activation function

If the activation function is linear, the slope is constant:

$$\Delta w = k \delta a_{in}$$

 \Box where *k* is a constant representing the learning rate ε and slope

- This corresponds to the original Delta rule:
 - □ It is straightforward to calculate
 - Performs gradient descent to the bottom of the error curve
 - \Box Δ w is proportional to (t_{out} a_{out}), so changes get smaller as error is reduced
 - □ In one-layer networks, there is a single minimum: gradient descent learning is therefore guaranteed to find a solution, if one exists.

Learning with the Sigmoid activation function

- Networks with linear activation functions:
 - □ have mathematically well-defined learning capacities (linear algebra)
 - □ they are known to be limited in the kinds of problems they can solve
- The logistic, or sigmoid, function is:
 - □ Nonlinear: more powerful
 - □ More neurologically plausible
 - Less well-understood, more difficult to analyse mathematically

10

Behaviour of the logistic function

Deriving the slope of the logistic function:

$$a_{out} = \sigma(net_{out}) = \frac{1}{1 + e^{-net_{out}}}$$
$$F^* = \sigma'(net_{out}) = a_{out}(1 - a_{out})$$

The Delta rule, assuming the logistic function:

$$\Delta w = 2\varepsilon \, \delta F^* a_{in}$$

or

$$\Delta w = 2\varepsilon (t_{out} - a_{out}) a_{out} (1 - a_{out}) a_{int}$$

Training a network with Gradient Descent

The training phase involves

- □ Presenting an input pattern, and computing the output for the network using the current connection weights: $a_{out} = f(\sum_{in} w_{out,in} \times a_{in})$
- □ Calculating the error between the desired and the actual output ($t_{out} a_{out}$)
- □ Using the Delta rule (appropriate for the logistic activation function):

$$\Delta w = \varepsilon (t_{out} - a_{out}) a_{out} (1 - a_{out}) a_{in}$$

- One such cycle is called a <u>sweep</u>
- A sweep through each pattern is called an epoch
- We can define the <u>global error</u> of the network, as the average error across all input patterns, k:
 - One common measure is the square root of mean error or else root mean square (rms)

rms error =
$$\sqrt{\frac{\sum_{k} (\vec{t}_k - \vec{o}_k)^2}{k}}$$

□ Squaring avoids positive and negative errors cancelling each other out

Training: an example

Consider the simple feedforward network:

- □ Assume an input pattern: 1 1
- □ Assume a learning rate of 0.1
- □ Assume a sigmoid activation
- Desired output is: 1

Determine the weight changes for 1 sweep:

$$\begin{aligned} a_2 &= f(1 \times 0.75 + 1 \times 0.5) = 0.78 \\ \delta_2 &= (t - a_2) f'(0.78) = 0.23 \times 0.16 = 0.037 \\ \Delta w_{20} &= \varepsilon \delta_2 o_0 = 0.1 \times 0.037 \times 1 = 0.0037 \\ \Delta w_{21} &= \varepsilon \delta_2 o_1 = 0.1 \times 0.037 \times 1 = 0.0037 \end{aligned}$$

The dynamics of weight changes

Learning rate: predetermined constant

The error: large error = large weight change

The slope of the activation function:

- □ The derivative of the logistic is largest for netinputs around 0, and for activations around .5
- □ Small netinputs co-occur with small weights
- □ Small weights tend to occur early in training
- □ The result: bigger changes during early stages of learning
 - + Less resilience in older network: harder to teach new tricks!

The momentum:

This parameter determines how much of the previous weight change affects the current weight change

Calculating Error

Consider a simple network for learning the AND operation

After training (1000 sweeps, 250 epochs), we can calculate the global (RMS) error as follows:

Input	Target	Output	(t-o)^2
00	0	0,147	0,022
01	0	0,297	0,088
10	0	0,334	0,112
11	1	0,552	0,201
		RMS:	0,325

Observe how error steadily falls during training

Calculating Global RMS Error

	Calculation of Global RMS error: for (auto1), ch. 5, Plunkett & Elman							
		Observed Output			Target			
pattern 1	0,321	0,196	0,255	0,264	1,000	0,000	0,000	0,000
pattern 2	0,227	0,612	0,169	0,211	0,000	1,000	0,000	0,000
pattern 3	0,287	0,188	0,342	0,276	0,000	0,000	1,000	0,000
pattern 4	0,296	0,207	0,300	0,268	0,000	0,000	0,000	1,000
	Error (t-o)							
	0,679	-0,196	-0,255	-0,264				
	-0,227	0,388	-0,169	-0,211				
	-0,287	-0,188	0,658	-0,276				
	-0,296	-0,207	-0,3	0,732				
	Error^2							
	0,461041	0,038416	0,065025	0,069696	0,634178			
	0,051529	0,150544	0,028561	0,044521	0,275155			
	0,082369	0,035344	0,432964	0,076176	0,626853			
	0,087616	0,042849	0,09	0,535824	0,756289			
				RMS Error	0,757046			

Intermediate Summary

- Learning rules:
 - □ Perceptron convergence rule
 - Delta rule
 - + Depends on the (slope of the) activation function
 - □ For one-layer networks using these rules:
 - + A solution will be found, if it exists
 - □ How do we know if the network has learned successfully?
- Error:
 - □ For learning, we use $(t_{out} a_{out})$ to change weights
 - □ To characterise the performance of the network as a whole, we need a measure of global error:
 - + Across all outputs
 - + Across all training patterns
 - □ One possible measure is RMS
 - Another is entropy: doesn't really matter, since we only need to know if performance is improving or deteriorating on a relative basis

Solving XOR with hidden units

- Consider the following network:
 - □ two-layer, feedforward
 - 2 units in a "hidden" layer
 - \Box Hidden and output units are threshold units: $\theta = 1$

Representations at hidden layer:

Input	Hic	Target	
	h ₁	h ₂	
0 0	0	0	0
1 0	1	0	1
0 1	0	1	1
1 1	0	0	0

Problem: current learning rules cannot be used for hidden units:

□ Why? We don't know what the "error" is at these nodes (no target)

□ "Delta" requires that we know the desired activation

$$\Delta w = 2\varepsilon \delta F^* a_{in}$$

Backpropagation of Error

(a) Forward propagation of activity:

$$net_{out} = \sum w_{oh} \cdot a_{hidden}$$
$$a_{out} = f(net_{out})$$

(b) Backward propagation of error:

$$\operatorname{err}_{hidden} = \sum w_{oh} \cdot \delta_{out}$$
$$\delta_{hidden} = f'(\operatorname{net}_{hidden}) \cdot \operatorname{err}_{hidden}$$

Learning in Multi-layer Networks

The generalised Delta rule:

$$\Delta w_{ij} = \varepsilon \delta_i a_j$$

For output nodes :
For hidden nodes :
$$\delta_k = \sigma'(net_k)(t_k - a_k) \qquad \delta_i = \sigma'(net_i) \sum_k w_{ki} \delta_k$$

where, $\sigma'(net_i) = a_i(1 - a_i)$

Multi-layer networks can, in principle, learn any mapping function:

□ Not constrained to problems which are linearly separable

While there exists a solution for any mapping problem, backpropagation is not guaranteed to find it

- Why? Local minima:
 - Backprop can get trapped here
 - Global minimum (solution) is here
 - □ Not real problem in practice

Example of Backpropagation

- Consider the following network, containing a single hidden node
- Calculate the weight changes for both layers of the network, assuming learning rate ε = 0.1 and targets of: 1 1

The generalised Delta rule : $\Delta w_{ij} = \varepsilon \delta_i a_j$ For output nodes : $\delta_k = \sigma'(net_k)(t_k - a_k)$ For hidden nodes : $\delta_i = \sigma'(net_i) \sum_k \delta_k w_{ki}$ where, $\sigma'(net_i) = a_i(1 - a_i)$

Forward and Backpropagation

The Family Tree Problem

Family trees encode more complex relationships:

- 24 people, 12 relationships
 - □ Mother, daughter, sister, wife, aunt, niece (+ masculine versions)
 - Training: trained on 100 of 104 possible relationships
- Learned the other 4: e.g. Victoria's son is Colin

What does the Network Learn

- E.g. Victoria's son is Colin:
 - □ Input: Victoria & Son
 - Output: Colin
- In a single-layer network:
 - □ Victoria would activate all the people Victoria was (known to be) related to
 - □ Son would activate all people who are (known to be) sons
 - + Colin would be partially activated, because he is James' son
 - □ But Colin would not have very high activation
 - + James and Arthur are both sons, and related to Victoria
- A solution to this problem requires deduction:
 - □ Transitive inference:
 - + Victoria's husband is James AND James' son is Colin
 - THEREFORE Victoria's son is Colin
 - I Thus the structure of the tree is learned from exemplars

Learning family tree relationships

The network architecture, using hidden units:

- The learned encoding of people:
- 1. Active for English
- 2. Active for older generation
- 3. Active for the leaves
- 4. Encodes right side
- 5. Active for Italian
- 6. Encodes left side

Some comments

- Single layer networks (perceptrons)
 - □ Can only solve problems which are linearly separable
 - □ But a solution is guaranteed by the perceptron convergence rule
- Multi-layer networks (with hidden units)
 - □ Can in principle solve any input-output mapping function
 - □ Backpropagation performs gradient descent of the error surface
 - □ Can get caught in a local minimum
 - □ Cannot be guaranteed to find the solution
- Finding solutions:
 - □ Manipulate learning rule parameters: learning rate, momentum
 - Brute force search (sampling) of the error surface to find a set of starting position in weight space
 - + Computationally impractical for complex networks

Biological plausibility

- Backpropagation requires bi-directional signals
 - □ Forward propagation of activation
 - □ Backward propagation of error
 - Nodes must "know" the strengths of all synaptic connections to compute error: non-local
- Axons are uni-directional transmitters
- Possible justification:
 - □ Backpropagation explains *what* is learned,
 - □ Not *how* it is learned
- Network architecture:
 - □ Successful learning crucially depends on the number of hidden units
 - □ There is no way to know, a priori, what that number is
- Another solution: use a network with a local learning rule
 - E.g. Hebbian learning