
Computational Psycholinguistics

Lecture 9: Learning in
Neural Networks

Marshall R. Mayberry

Computerlinguistik
Universität des Saarlandes

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 2

Neural network architecture
 The activation of a unit i is

represented by the symbol ai.
 The extent to which unit j influences

unit i is determined by the weight wij

 The input from unit j to unit i is the
product: aj * wij

 For a node i in the network:

 The output activation of node i is
determined by the activation
function, e.g. the logistic:

!

netinputi = wija j

j

"

!

ai ="(netinputi) =
1

1+ e
#neti

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 3

2-D Representation of Boolean Functions

 We can visual the relationship between inputs (plotted in 2-D space)
and the desired output (represented as a line dividing the space):

(1,1)

(1,0)(0,0)

(0,1) (1,1)

(1,0)(0,0)

(0,1)

AND

(1,1)

(1,0)(0,0)

(0,1)

XOR

(1,1)

(1,0)(0,0)

(0,1)

OR

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 4

“Perceptrons” [Rosenblatt 1958]

 Perceptron: a simple, one-layer, feed-forward network:

 Binary threshold activation function:

 Learning: the perceptron convergence rule
 Two parameters can be adjusted:

 The threshold
 The weights

aout

ain

w

!

net
out

= w " a
in

in

#

!

a
out

=1 if net
out

> "

 = 0 otherwise

!

The error, " = (t
out
a

out
)

$% = #&"

$w = &"a
in

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 5

Gradient descent

 Let’s define the error on the outputs
as: Ep=(tout-aout)2

 Recall: aout = ∑w ain

 This means Ep is always positive
 For a single-layer net, if we consider one

weight, holding the others constant:
 Plot Error versus varying the weight

 The lowest point on the curve, represents
the minimum error possible for:
 For pattern p
 By varying a given weight w

 Learning: the network is always at some point on the error curve
 Use the slope of the curve to change the weights in the right direction
 If slope is positive, then decrease the weight
 If slope is negative, increase the weight

Weight

Er
ro

r (
E

p)

Optimum weight

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 6

Visualising the error „surface“

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 7

Gradient descent continued

 We need calculus to allow us to determine how the error varies when a
particular weight is varied:

!

"w = #$
%E

%w

"w = #$
%(tout # aout)

2

%w

"w = #$
%[tout # f (w & ain

in
')]

2

%w

"w = 2$[tout # f (w & ain
in

')] & (f (w & ain
in

') & ain

"w = 2$)F
*
ain

!

" = (t
out
a

out
)

F* = slope of the activation function

$

%
&

'

(
)

Slope: Rate of change of E, with respect to w

Error = (tout - aout)2

Derivative of the
activation function wrt w,

i.e. its slope

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 8

Gradient descent and the delta rule

 The perceptron convergence rule:
 Our revised learning rule, based on gradient descent is:

 where F* is the slope of the activation function
 If the activation function is linear, the slope is constant:

 where k is a constant representing the learning rate ε and slope
 This corresponds to the original Delta rule:

 It is straightforward to calculate
 Performs gradient descent to the bottom of the error curve
 ∆w is proportional to (tout - aout), so changes get smaller as error is reduced
 In one-layer networks, there is a single minimum: gradient descent

learning is therefore guaranteed to find a solution, if one exists.

!

"w = #$ a
in

!

"w = 2#$F *
a
in

!

"w = k# a
in

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 9

Learning with the Sigmoid activation function

 Networks with linear activation functions:
 have mathematically well-defined learning capacities (linear algebra)
 they are known to be limited in the kinds of problems they can solve

 The logistic, or sigmoid, function is:
 Nonlinear: more powerful
 More neurologically plausible
 Less well-understood, more difficult to analyse mathematically

 Recall:

!

a
i
="(net

i
) =

1

1+ e
#net

i

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 10

Behaviour of the logistic function

 Deriving the slope of the logistic
function:

 The Delta rule, assuming the
logistic function:

!

a
out

="(net
out
) =

1

1+ e
#net

out

F
*

="$(net
out
) = a

out
(1# a

out
)

!

"w = 2# $F *
a
in

or

"w = 2#(t
out
% a

out
)a

out
(1% a

out
)a

in

aout

a o
ut

(1
-a

ou
t)

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 11

Training a network with Gradient Descent

 The training phase involves
 Presenting an input pattern, and computing the output for the network

using the current connection weights: aout = f(∑in wout,in x ain)
 Calculating the error between the desired and the actual output (tout - aout)
 Using the Delta rule (appropriate for the logistic activation function):

 One such cycle is called a sweep
 A sweep through each pattern is called an epoch
 We can define the global error of the network, as the average error

across all input patterns, k:
 One common measure is the

square root of mean error or else
 root mean square (rms)

 Squaring avoids positive and negative errors cancelling each other out

!

"w = #(t
out
$ a

out
)a

out
(1$ a

out
)a

in

!

rms error =

(
r
t
k
"

r
o

k
)

k

#
2

k

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 12

Training: an example

 Consider the simple feedforward network:
 Assume an input pattern: 1 1
 Assume a learning rate of 0.1
 Assume a sigmoid activation
 Desired output is: 1

 Determine the weight changes for 1 sweep:

a2

a0 a1

0.75 0.5

a2

a0 a1

0.7537 0.5037

!

a2 = f (1" 0.75 +1" 0.5) = 0.78

#2 = (t $ a2) % f (0.78) = 0.23" 0.16 = 0.037

&w20 = '#2o0 = 0.1" 0.037 "1= 0.0037

&w21 = '#2o1 = 0.1" 0.037 "1= 0.0037

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 13

The dynamics of weight changes

 Learning rate: predetermined constant

 The error: large error = large weight change

 The slope of the activation function:
 The derivative of the logistic is largest for netinputs around 0, and for

activations around .5
 Small netinputs co-occur with small weights
 Small weights tend to occur early in training
 The result: bigger changes during early stages of learning

 Less resilience in older network: harder to teach new tricks!

 The momentum:
 This parameter determines how much of the previous weight change

affects the current weight change

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 14

Calculating Error

 Consider a simple network for learning the AND operation

 After training (1000 sweeps, 250 epochs), we can calculate the global
(RMS) error as follows:

 Observe how error steadily falls during training

0,325RMS:
0,2010,55211 1
0,1120,33401 0
0,0880,29700 1
0,0220,14700 0

(t-o)^2OutputTargetInput

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 15

Calculating Global RMS Error

Calculation of Global RMS error: for (auto1), ch. 5, Plunkett & Elman

pattern 1 0,321 0,196 0,255 0,264 1,000 0,000 0,000 0,000

pattern 2 0,227 0,612 0,169 0,211 0,000 1,000 0,000 0,000

pattern 3 0,287 0,188 0,342 0,276 0,000 0,000 1,000 0,000

pattern 4 0,296 0,207 0,300 0,268 0,000 0,000 0,000 1,000

Error (t-o)

0,679 -0,196 -0,255 -0,264

-0,227 0,388 -0,169 -0,211

-0,287 -0,188 0,658 -0,276

-0,296 -0,207 -0,3 0,732

Error^2

0,461041 0,038416 0,065025 0,069696 0,634178

0,051529 0,150544 0,028561 0,044521 0,275155

0,082369 0,035344 0,432964 0,076176 0,626853

0,087616 0,042849 0,09 0,535824 0,756289

RMS Error 0,757046

Observed Output Target

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 16

Intermediate Summary

 Learning rules:
 Perceptron convergence rule
 Delta rule

 Depends on the (slope of the) activation function
 For one-layer networks using these rules:

 A solution will be found, if it exists
 How do we know if the network has learned successfully?

 Error:
 For learning, we use (tout - aout) to change weights
 To characterise the performance of the network as a whole, we need a

measure of global error:
 Across all outputs
 Across all training patterns

 One possible measure is RMS
 Another is entropy: doesn’t really matter, since we only need to know if

performance is improving or deteriorating on a relative basis

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 17

Solving XOR with hidden units
 Consider the following network:

 two-layer, feedforward
 2 units in a “hidden” layer
 Hidden and output units are threshold units:

 Representations at hidden layer:

 Problem: current learning rules cannot be used for hidden units:
 Why? We don’t know what the “error” is at these nodes (no target)
 “Delta” requires that we know the desired activation

O

h1 h2

+1 +1

i1 i2

+1+1 -1 -1

!

" =1

h2h1

0001 1

1100 1

1011 0

0000 0

TargetHiddenInput

!

"w = 2#$F *
a
in

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 18

Backpropagation of Error

!

(a) Forward propagation of activity :

net out = woh " ahidden#
aout = f (net out)

!

(b) Backward propagation of error :

errhidden = woh " #out$
#hidden = % f (net hidden) " errhidden

i1

i2

i3

h1

h2

h3

o1

o2

o3

i1

i2

i3

h1

h2

h3

o1

o2

o3

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 19

Learning in Multi-layer Networks

 The generalised Delta rule:

 Multi-layer networks can, in principle, learn any mapping function:
 Not constrained to problems which are linearly separable

 While there exists a solution for any mapping problem,
backpropagation is not guaranteed to find it
 Unlike the perceptron convergence rule

 Why? Local minima:
 Backprop can get trapped here
 Global minimum (solution) is here
 Not real problem in practice

!

"wij = #$ia j

For output nodes : For hidden nodes :

$k = % & (netk)(tk ' ak) $i = % & (neti) wki

k

($k

where, % & (neti) = ai(1' ai)

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 20

Example of Backpropagation

 Consider the following network, containing
a single hidden node

 Calculate the weight changes for both layers
of the network, assuming learning rate ε = 0.1

 and targets of: 1 1

a2

1 1

0.5 0.1

a3 a4

-0.3 0.7

!

The generalised Delta rule :

"wij = #$ia j

For output nodes :

$k = % & (netk)(tk ' ak)

For hidden nodes :

$i = % & (neti) $kwki

k

(

where, % & (neti) = ai(1' ai)

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 21

Forward and Backpropagation

 = 0.1·0.13·0.65 ≈ 0.008Δw32 = 0.1·0.1·0.65 ≈ 0.007Δw42

 = 0.1·0.007·1 ≈ 0.0007Δw20 = 0.1·0.007·1 ≈ 0.0007Δw21

a2

1 1

a3 a4

1 1

-0.3 w32 0.7 w42

0.1 w210.5 w20

2 ≈ 0.65a2a = σ(1·0.5+1·0.1)

3 ≈ 0.45a
3a = σ(-0.3·0.65) 4 ≈ 0.60a4a = σ(0.7·0.65) ≈ 0.13

3δ = σ′(0.45)(1-0.45)
≈ 0.1

4δ = σ′(0.60)(1-0.60)

δ2 = σ′(0.65)(-0.3·0.13+0.7·0.1)
≈ 0.007

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 22

The Family Tree Problem

 Family trees encode more complex relationships:

 24 people, 12 relationships
 Mother, daughter, sister, wife, aunt, niece (+ masculine versions)

 Training: trained on 100 of 104 possible relationships
 Learned the other 4: e.g. Victoria’s son is Colin

Christopher=Penelope Andrew=Christine

Victoria=JamesMargaret=Arthur Jennifer=Charles

Colin Charlotte

Roberto=Maria Pierro=Francesca

Lucia=MarcoGina=Emilio Angelo=Tomaso

Alfonso Sophia

English

Italian

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 23

What does the Network Learn

 E.g. Victoria’s son is Colin:
 Input: Victoria & Son
 Output: Colin

 In a single-layer network:
 Victoria would activate all the people Victoria was (known to be) related to
 Son would activate all people who are (known to be) sons

 Colin would be partially activated, because he is James’ son
 But Colin would not have very high activation

 James and Arthur are both sons, and related to Victoria

 A solution to this problem requires deduction:
 Transitive inference:

 Victoria’s husband is James AND James’ son is Colin
 THEREFORE Victoria’s son is Colin

 Thus the structure of the tree is learned from exemplars

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 24

Learning family tree relationships

 The network architecture, using hidden units:

 The learned encoding
of people:

1. Active for English

2. Active for older
generation

3. Active for the leaves
4. Encodes right side
5. Active for Italian
6. Encodes left side

Local encoding
of person2

Learned distributed
encoding of person2

Learned distributed
encoding of person1

Learned distributed
encoding of relation

Input: local
encoding of person1

Input: local
encoding of relation

12 Hidden Units

24 Units 12 Units

6 Units

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 25

Some comments

 Single layer networks (perceptrons)
 Can only solve problems which are linearly separable
 But a solution is guaranteed by the perceptron convergence rule

 Multi-layer networks (with hidden units)
 Can in principle solve any input-output mapping function
 Backpropagation performs gradient descent of the error surface
 Can get caught in a local minimum
 Cannot be guaranteed to find the solution

 Finding solutions:
 Manipulate learning rule parameters: learning rate, momentum
 Brute force search (sampling) of the error surface to find a set of starting

position in weight space
 Computationally impractical for complex networks

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 26

Biological plausibility

 Backpropagation requires bi-directional signals
 Forward propagation of activation
 Backward propagation of error
 Nodes must “know” the strengths of all synaptic connections

to compute error: non-local
 Axons are uni-directional transmitters
 Possible justification:

 Backpropagation explains what is learned,
 Not how it is learned

 Network architecture:
 Successful learning crucially depends on the number of hidden units
 There is no way to know, a priori, what that number is

 Another solution: use a network with a local learning rule
 E.g. Hebbian learning

