
Computational Psycholinguistics

Lecture 8: Introduction to
Connectionist Models

Marshall R. Mayberry

Computerlinguistik
Universität des Saarlandes

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 2

Connectionist language learning: contents
 Connectionist Information Processing

 Simple connectionist models and their properties: The perceptron
 Multi-layer perceptrons: feed-forward networks and internal representations
 The encoding problem: Localist and distributed representations
 Generalisation and association

 Connectionist Models of Language
 Modelling acquisition of the English Past-Tense and reading aloud
 Processing sequences: Simple recurrent networks
 Modelling acquisition of hierarchical syntactic knowledge

 Tutorials: tLearn neural network simulator (Win/Mac/Linux)
 Introduction and Learning with tLearn
 Autoassociation and cluster analysis
 The English past-tense
 SRNs

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 3

Theories of Language

 Theories of the human language faculty:
 Knowledge: what is the nature of our knowledge of language?

 Rules and Representations
 Symbolic versus Distributed
 Explicit versus Implicit

 Acquisition: where does knowledge come from?
 Is some knowledge innate?
 What linguistic knowledge is learned, and how?

 Usage: how do people use knowledge to process new input?
 What mechanisms do people use in applying existing linguistic knowledge

to the interpretation of novel input?

 Connectionist models of human language:
 Addresses these issues simultaneously

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 4

Connectionist Information Processing

 Connectionist models of information processing can become complex,
but the idea is based on simple neuronal processing in the brain:

 Basic computational operation involves one neuron passing information
related to the sum of the signals reaching it onto other neurons

 Learning involves changing the strength of the connections between
neurons, and thus the influence they have upon each other

 Cognitive processes involve the use of large numbers of neurons to
perform these basic computations in parallel

 Information about an input signal or memory of past events is distributed
across many neurons and connections

 Terms: connectionism, parallel distributed processing, neural
networks, neurocomputing

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 5

Assumptions about the brain ...

 ... On which connectionist models are based.

 Neurons integrate information:
 All neuron types sum inputs and compute an output

 Neurons pass information about the strength of their input:
 Output encodes information about the degree of input: firing rate

 Brain structure is layered:
 Information passes through sequences of independent structures

 Influence of one neuron upon another depends on connection strength:
 A given neuron is connected to thousands of other neurons, but its

influence on a particular node is determined by synaptic strength
 Learning is accomplished through changing connection strengths:

 There is evidence that this is so
 BUT most connectionist learning rules are not biologically plausible.

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 6

Neurons versus Nodes

• Neurons receive signals (excitatory or inhibitory) from other neurons
via synaptic connections to its dendrites.
• If the sum of these signals exceeds a certain threshold, then the
neuron fires, sending a signal along its axon.

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 7

Brain versus Network
 The human brain contains

approximately 1010 - 1011 neurons
 Those neurons are densely

interconnected:
 105 connections per neuron
 Thus, 1015 - 1016 connections in total

 Connections can be both excitatory
and inhibitory

 Learning involves modifying of
synapses (connections)

 Connections can be both added and
eliminated (pruning)

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 8

The “Connectionist” Perspective

 Rumelhart and McClelland (1987, p. 196):
 “... implicit knowledge of language may be stored among simple

processing units organized into networks. While the behaviour of such
networks may be describable (at least approximately) as conforming to
some system of rules, we suggest that an account of the fine structure of
the phenomena of language and language acquisition can be best
formulated in models that make reference to the characteristics of the
underlying networks”

 Key ideas:
 Neurologically based (but not true models of the brain)
 Distributed, implicit representations
 Dense connectivity
 Communication of “real values” not “symbols”
 Representations and processing are the same
 Learning: supervised and unsupervised

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 9

Properties of Connectionist Networks

 Learning
 There is usually no predetermined (innate) knowledge of language, but ...

 Input/output representations are often specified
 The architecture of the network may be “suited” to a particular task
 The learning mechanism and parameters provide degrees of freedom

 Learning takes place in direct response to experience

 Generalisation
 Networks are able to learn generalisations, not just by rote
 More efficient representation of information
 Novel inputs can be processed

 Representation
 Learned automatically, and typically distributed

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 10

Properties continued

 Rules versus exceptions
 Single mechanism to explain both general rules and also exceptions

 Graded:
 Can often give a useful output to new, partial, noisy input

(pattern completion)
 Damage is distributed, and some performance is still possible:

 Modelling of brain damage and neurological disorders

 Frequency effects
 Model response time behaviours where high frequency inputs are

recognised faster than low frequency ones

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 11

Computational Properties of Networks

 Neurally inspired:
 Slow and parallel
 Highly interconnected
 Learning by changing connection strength
 Processing is distributed/ “decentralized”

 Neuron is the basic processing unit
 Network configuration = “program”
 Local computation yields global behaviour
 Long-term memory is in the strength of connections (weights)
 Short-term memory is in the pattern of activity

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 12

Representation

 One-to-one
 Discrete
 Fragile
 Literal
 Limited

 Many-to-one
 Continuous
 Robust
 Generalisable
 Unbounded

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 13

Basic Structure of Nodes

 A node can be characterised as follows:
 Input connections representing the flow of activation from other nodes or

some external source
 Each input connection has its own weight, which determines how much

influence that input has on the node
 A node i has an output activation ai = f(neti) which is a function of the

weighted sum of its input activations, net.

 The net input is determined as follows: neti = wijaj
j

!

∑ ƒ(neti)
Node
inputs

Node
outputs

wi1

wi2

wi3

a1

a2

a3

ai

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 14

An example

 A one-layer feed-forward network:

 So the net input for a2 is:

 Consider the network with the following
inputs and weights:

 The net input for node a2 is:
 1 x .5 + 1 x .25 = 0.75

a0

w20

a1

w21

a3a2

Input nodes

Output nodesneti = wijaj
j

!

!

net input a2 = w2 0 " a0 + w2 1 " a1

1

.5

1

.25

a3a2

Input nodes

Output nodes

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 15

About weights

 Node j influences node i by passing information about its activity level.

 The degree of influence it has is determined by the weight connecting
node j to node i.
 A smaller weight corresponds to reduced influence of one particular node

on another
 A larger weight emphasises the influence of the node’s activation

 Weights can be either positive or negative
 Positive weights contribute activation to the net input
 Negative weights lead to a reduction of the net input activation
 Brain: excitatory versus inhibitory connections

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 16

Activation functions

 The activation function determines the activation ai for node i from the
net input (neti) to the node: f(neti)

 Linear activation function
 (McCulloch-Pitts neurode, perceptron)
 Identity: the ai = neti

 Threshold activation function:
 IF neti > T THEN ai := neti - T
 ELSE ai := 0

netinput

ac
tiv

ity

netinput

ac
tiv

ity

!

f (neti) = neti

f (0.75) = 0.75

T

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 17

More Activation Functions

 Binary threshold activation function:
 IF neti > T THEN ai := 1
 ELSE ai := 0

 Nonlinear activation function
 It is often more useful to use the

“sigmoidal” logistic function:

!

ai = f (neti) =
1

1+ e
"neti

netinput

ac
tiv

ity

T

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 18

Calculating the activation: neti is 1.25

 Linear activation:

 Linear threshold: T=0.5

 Binary threshold: T=0.5

 Nonlinear activation:
 Sigmoid or “logistic”
 function

!

f (neti) = neti

f (1.25) =1.25

!

IF neti > T then f (neti) = neti " T

ELSE f (neti) = 0

f (1.25) =1.25 "0.5 = 0.75

!

IF neti > T then f (neti) =1

ELSE f (neti) = 0

f (1.25) =1

!

f (neti) =
1

1+ e
"neti

f (1.25) = 0.777

netinput

ac
tiv

ity

netinput

ac
tiv

ity

netinput

ac
tiv

ity

!

f :"#"

!

f :"# [0,1]

!

f :"# [0,1]

!

f :"#"

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 19

About activation functions
 The activation function defines the relationship between the net input

to a node, and its activation level (which is also its output).

 Neurons in the brain have thresholds, only fire with sufficient net input.

 Nonlinearity (i.e. a small change in input can result in large change in
output) can be useful to reduce the effects of spurious inputs, noise.

 Most common in connectionist modelling: sigmoid/logistic
 Activation ranges between 0 and 1
 Rate of activation change is highest for net inputs around 0
 Models neurons by implementing thresholding, a maximum activity, and

smooth transition between states.

 The sigmoid function also has nice mathematical properties

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 20

Logistic Function: bias and gain

!

a
3

="(# net
3

+ $) =
1

1+ e
%(# net3 +$)

neti = wijaj
j

!
 Weighted sum of inputs

 Bias θ: threshold weight

 Gain γ: slope of logistic function

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 21

Summary of network architecture
 The activation of a unit i is

represented by the symbol ai.
 The extent to which unit j

influences unit i is determined by
the weight wij

 The input from unit j to unit i is the
product: aj * wij

 For a node i in the network:

 The output activation of node i is
determined by the activation
function, e.g. the logistic:

!

neti = wija j

j

"

!

ai = f (neti) =
1

1+ e
"neti

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 22

Learning in connectionist networks
 Supervised learning in connectionist networks involves successively

adjusting connection weights to reduce the discrepancy between the actual
output activation and the target output activation
 An input is presented to the network
 Activations are propagated through the network to its output
 Outputs are compared to “correct” outputs: difference is called error
 Weights are adjusted

 The Delta Rule:

 (ti - ai) is the difference between the target output activation and the actual
activation produced by the network
 What is the “error”?

 aj is the activity of the contributing unit j
 How much activation is this unit responsible for? (Credit/blame assignment)

 ε is the learning rate parameter.
 How rapidly do we want to make changes?

!

"wij = ti # ai()a j$

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 23

Training the Network

 Consider the AND function
 Present stimulus: 0 0
 Compute output activation
 Compared with desired output (0)
 Use Delta rule to change weights
 Present next stimulus: 0 1
 ...

 An Epoch, consists of a single presentation of all training examples
 Here there are 4 such examples

 A Sweep, is a presentation of a single training example
 So, 250 epochs consists of 1000 sweeps

111
001
010
000

OutputInput 2Input 1

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 24

“Perceptrons” [Rosenblatt 1958]

 Perceptron: a simple, one-layer, feed-forward network:

 Binary threshold activation function:

 Learning: the perceptron convergence rule
 Two parameters can be adjusted:

 The threshold
 The weights

aout

ain

w

!

net
out

= w " a
in

in

#

!

a
out

=1 if net
out

>"

 = 0 otherwise

!

The error, " = (t
out
a

out
)

$% = #&"

$w = &"a
in

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 25

2-D Representation of Boolean Functions

 We can visual the relationship between inputs (plotted in 2-D space)
and the desired output (represented as a line dividing the space):

(1,1)

(1,0)(0,0)

(0,1) (1,1)

(1,0)(0,0)

(0,1)

AND

(1,1)

(1,0)(0,0)

(0,1)

XOR

(1,1)

(1,0)(0,0)

(0,1)

OR

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 26

Learning OR

 Consider the following simple perceptron:
 Recall the convergence rule:

 We want to train this to learn boolean OR:
 Note: changes have opposite signs

 E.g if activity is less than target, δ is positive
 Threshold is decreased
 Weight is increased

 If δ is non-zero, threshold is always changed
 But if ain is zero, the weight is not changed

 The changes can be calculated straightforwardly, but do they lead to
convergence on a solution to a problem?

a2

a0 a1

w20 w21

111
101
110
000

a2a1a0

Classification problem

!

The error, " = (t
out
a

out
)

$% = #&"

$w = &"a
in

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 27

Learning OR continued …

 Recall the convergence rule: And the net: a2

a0 a1

0.2 0.1

!

" =1

1.3

0.7

0.6

0.0

1.3

0.1

0.2

0.0

Σ

0000110.00.60.71 1

0000110.00.60.71 0

0000110.00.60.70 1

0000000.00.60.70 0

0000110.00.60.71 1

0.50-0.51.0100.50.10.70 1

00.5-0.51.0101.00.10.21 0

0000001.00.10.20 0

∆w21∆w20∆θδt2a2θw21w20a0 a1

!

" = 0.5

!

aout = a
2

= w
2 ja j

j

"

!

The error, " = (t
out
a

out
)

$% = #&"

$w = &"a
in

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 28

Learning in a nutshell

 Patterns are vectors on [0,1]
 Input pattern is passed through a weight matrix
 Net values are summed and squashed to [0,1]
 Output pattern is compared to target pattern
 Error between output and target is propagated back through weight matrix
 Weights are changed to minimize error

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 29

Summary
 Connectionism is inspired by information processing in the brain

 Models typically contain several layers of processing units
 Units correspond to a neuron (or group of neurons)
 Units sum weighted inputs from previous layers, and compute activation
 Output activation is passed to units of the next layer

 An input stimulus causes a “pattern of activation” on the first layer
 Activations are then propagated through the network
 The influence of one unit upon another is determined by the weight
 The output response is the “pattern of activation” on the final layer

 Learning aims to reduce the discrepancy between actual and desired
output patterns of activation
 The Delta rule iteratively changes the weights of successive epochs
 Training is complete when error is sufficiently reduced

