
Computational Psycholinguistics

Lecture 8: Introduction to
Connectionist Models

Marshall R. Mayberry

Computerlinguistik
Universität des Saarlandes

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 2

Connectionist language learning: contents
 Connectionist Information Processing

 Simple connectionist models and their properties: The perceptron
 Multi-layer perceptrons: feed-forward networks and internal representations
 The encoding problem: Localist and distributed representations
 Generalisation and association

 Connectionist Models of Language
 Modelling acquisition of the English Past-Tense and reading aloud
 Processing sequences: Simple recurrent networks
 Modelling acquisition of hierarchical syntactic knowledge

 Tutorials: tLearn neural network simulator (Win/Mac/Linux)
 Introduction and Learning with tLearn
 Autoassociation and cluster analysis
 The English past-tense
 SRNs

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 3

Theories of Language

 Theories of the human language faculty:
 Knowledge: what is the nature of our knowledge of language?

 Rules and Representations
 Symbolic versus Distributed
 Explicit versus Implicit

 Acquisition: where does knowledge come from?
 Is some knowledge innate?
 What linguistic knowledge is learned, and how?

 Usage: how do people use knowledge to process new input?
 What mechanisms do people use in applying existing linguistic knowledge

to the interpretation of novel input?

 Connectionist models of human language:
 Addresses these issues simultaneously

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 4

Connectionist Information Processing

 Connectionist models of information processing can become complex,
but the idea is based on simple neuronal processing in the brain:

 Basic computational operation involves one neuron passing information
related to the sum of the signals reaching it onto other neurons

 Learning involves changing the strength of the connections between
neurons, and thus the influence they have upon each other

 Cognitive processes involve the use of large numbers of neurons to
perform these basic computations in parallel

 Information about an input signal or memory of past events is distributed
across many neurons and connections

 Terms: connectionism, parallel distributed processing, neural
networks, neurocomputing

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 5

Assumptions about the brain ...

 ... On which connectionist models are based.

 Neurons integrate information:
 All neuron types sum inputs and compute an output

 Neurons pass information about the strength of their input:
 Output encodes information about the degree of input: firing rate

 Brain structure is layered:
 Information passes through sequences of independent structures

 Influence of one neuron upon another depends on connection strength:
 A given neuron is connected to thousands of other neurons, but its

influence on a particular node is determined by synaptic strength
 Learning is accomplished through changing connection strengths:

 There is evidence that this is so
 BUT most connectionist learning rules are not biologically plausible.

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 6

Neurons versus Nodes

• Neurons receive signals (excitatory or inhibitory) from other neurons
via synaptic connections to its dendrites.
• If the sum of these signals exceeds a certain threshold, then the
neuron fires, sending a signal along its axon.

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 7

Brain versus Network
 The human brain contains

approximately 1010 - 1011 neurons
 Those neurons are densely

interconnected:
 105 connections per neuron
 Thus, 1015 - 1016 connections in total

 Connections can be both excitatory
and inhibitory

 Learning involves modifying of
synapses (connections)

 Connections can be both added and
eliminated (pruning)

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 8

The “Connectionist” Perspective

 Rumelhart and McClelland (1987, p. 196):
 “... implicit knowledge of language may be stored among simple

processing units organized into networks. While the behaviour of such
networks may be describable (at least approximately) as conforming to
some system of rules, we suggest that an account of the fine structure of
the phenomena of language and language acquisition can be best
formulated in models that make reference to the characteristics of the
underlying networks”

 Key ideas:
 Neurologically based (but not true models of the brain)
 Distributed, implicit representations
 Dense connectivity
 Communication of “real values” not “symbols”
 Representations and processing are the same
 Learning: supervised and unsupervised

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 9

Properties of Connectionist Networks

 Learning
 There is usually no predetermined (innate) knowledge of language, but ...

 Input/output representations are often specified
 The architecture of the network may be “suited” to a particular task
 The learning mechanism and parameters provide degrees of freedom

 Learning takes place in direct response to experience

 Generalisation
 Networks are able to learn generalisations, not just by rote
 More efficient representation of information
 Novel inputs can be processed

 Representation
 Learned automatically, and typically distributed

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 10

Properties continued

 Rules versus exceptions
 Single mechanism to explain both general rules and also exceptions

 Graded:
 Can often give a useful output to new, partial, noisy input

(pattern completion)
 Damage is distributed, and some performance is still possible:

 Modelling of brain damage and neurological disorders

 Frequency effects
 Model response time behaviours where high frequency inputs are

recognised faster than low frequency ones

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 11

Computational Properties of Networks

 Neurally inspired:
 Slow and parallel
 Highly interconnected
 Learning by changing connection strength
 Processing is distributed/ “decentralized”

 Neuron is the basic processing unit
 Network configuration = “program”
 Local computation yields global behaviour
 Long-term memory is in the strength of connections (weights)
 Short-term memory is in the pattern of activity

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 12

Representation

 One-to-one
 Discrete
 Fragile
 Literal
 Limited

 Many-to-one
 Continuous
 Robust
 Generalisable
 Unbounded

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 13

Basic Structure of Nodes

 A node can be characterised as follows:
 Input connections representing the flow of activation from other nodes or

some external source
 Each input connection has its own weight, which determines how much

influence that input has on the node
 A node i has an output activation ai = f(neti) which is a function of the

weighted sum of its input activations, net.

 The net input is determined as follows: neti = wijaj
j

!

∑ ƒ(neti)
Node
inputs

Node
outputs

wi1

wi2

wi3

a1

a2

a3

ai

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 14

An example

 A one-layer feed-forward network:

 So the net input for a2 is:

 Consider the network with the following
inputs and weights:

 The net input for node a2 is:
 1 x .5 + 1 x .25 = 0.75

a0

w20

a1

w21

a3a2

Input nodes

Output nodesneti = wijaj
j

!

!

net input a2 = w2 0 " a0 + w2 1 " a1

1

.5

1

.25

a3a2

Input nodes

Output nodes

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 15

About weights

 Node j influences node i by passing information about its activity level.

 The degree of influence it has is determined by the weight connecting
node j to node i.
 A smaller weight corresponds to reduced influence of one particular node

on another
 A larger weight emphasises the influence of the node’s activation

 Weights can be either positive or negative
 Positive weights contribute activation to the net input
 Negative weights lead to a reduction of the net input activation
 Brain: excitatory versus inhibitory connections

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 16

Activation functions

 The activation function determines the activation ai for node i from the
net input (neti) to the node: f(neti)

 Linear activation function
 (McCulloch-Pitts neurode, perceptron)
 Identity: the ai = neti

 Threshold activation function:
 IF neti > T THEN ai := neti - T
 ELSE ai := 0

netinput

ac
tiv

ity

netinput

ac
tiv

ity

!

f (neti) = neti

f (0.75) = 0.75

T

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 17

More Activation Functions

 Binary threshold activation function:
 IF neti > T THEN ai := 1
 ELSE ai := 0

 Nonlinear activation function
 It is often more useful to use the

“sigmoidal” logistic function:

!

ai = f (neti) =
1

1+ e
"neti

netinput

ac
tiv

ity

T

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 18

Calculating the activation: neti is 1.25

 Linear activation:

 Linear threshold: T=0.5

 Binary threshold: T=0.5

 Nonlinear activation:
 Sigmoid or “logistic”
 function

!

f (neti) = neti

f (1.25) =1.25

!

IF neti > T then f (neti) = neti " T

ELSE f (neti) = 0

f (1.25) =1.25 "0.5 = 0.75

!

IF neti > T then f (neti) =1

ELSE f (neti) = 0

f (1.25) =1

!

f (neti) =
1

1+ e
"neti

f (1.25) = 0.777

netinput

ac
tiv

ity

netinput

ac
tiv

ity

netinput

ac
tiv

ity

!

f :"#"

!

f :"# [0,1]

!

f :"# [0,1]

!

f :"#"

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 19

About activation functions
 The activation function defines the relationship between the net input

to a node, and its activation level (which is also its output).

 Neurons in the brain have thresholds, only fire with sufficient net input.

 Nonlinearity (i.e. a small change in input can result in large change in
output) can be useful to reduce the effects of spurious inputs, noise.

 Most common in connectionist modelling: sigmoid/logistic
 Activation ranges between 0 and 1
 Rate of activation change is highest for net inputs around 0
 Models neurons by implementing thresholding, a maximum activity, and

smooth transition between states.

 The sigmoid function also has nice mathematical properties

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 20

Logistic Function: bias and gain

!

a
3

="(# net
3

+ $) =
1

1+ e
%(# net3 +$)

neti = wijaj
j

!
 Weighted sum of inputs

 Bias θ: threshold weight

 Gain γ: slope of logistic function

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 21

Summary of network architecture
 The activation of a unit i is

represented by the symbol ai.
 The extent to which unit j

influences unit i is determined by
the weight wij

 The input from unit j to unit i is the
product: aj * wij

 For a node i in the network:

 The output activation of node i is
determined by the activation
function, e.g. the logistic:

!

neti = wija j

j

"

!

ai = f (neti) =
1

1+ e
"neti

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 22

Learning in connectionist networks
 Supervised learning in connectionist networks involves successively

adjusting connection weights to reduce the discrepancy between the actual
output activation and the target output activation
 An input is presented to the network
 Activations are propagated through the network to its output
 Outputs are compared to “correct” outputs: difference is called error
 Weights are adjusted

 The Delta Rule:

 (ti - ai) is the difference between the target output activation and the actual
activation produced by the network
 What is the “error”?

 aj is the activity of the contributing unit j
 How much activation is this unit responsible for? (Credit/blame assignment)

 ε is the learning rate parameter.
 How rapidly do we want to make changes?

!

"wij = ti # ai()a j$

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 23

Training the Network

 Consider the AND function
 Present stimulus: 0 0
 Compute output activation
 Compared with desired output (0)
 Use Delta rule to change weights
 Present next stimulus: 0 1
 ...

 An Epoch, consists of a single presentation of all training examples
 Here there are 4 such examples

 A Sweep, is a presentation of a single training example
 So, 250 epochs consists of 1000 sweeps

111
001
010
000

OutputInput 2Input 1

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 24

“Perceptrons” [Rosenblatt 1958]

 Perceptron: a simple, one-layer, feed-forward network:

 Binary threshold activation function:

 Learning: the perceptron convergence rule
 Two parameters can be adjusted:

 The threshold
 The weights

aout

ain

w

!

net
out

= w " a
in

in

#

!

a
out

=1 if net
out

> "

 = 0 otherwise

!

The error, " = (t
out
a

out
)

$% = #&"

$w = &"a
in

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 25

2-D Representation of Boolean Functions

 We can visual the relationship between inputs (plotted in 2-D space)
and the desired output (represented as a line dividing the space):

(1,1)

(1,0)(0,0)

(0,1) (1,1)

(1,0)(0,0)

(0,1)

AND

(1,1)

(1,0)(0,0)

(0,1)

XOR

(1,1)

(1,0)(0,0)

(0,1)

OR

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 26

Learning OR

 Consider the following simple perceptron:
 Recall the convergence rule:

 We want to train this to learn boolean OR:
 Note: changes have opposite signs

 E.g if activity is less than target, δ is positive
 Threshold is decreased
 Weight is increased

 If δ is non-zero, threshold is always changed
 But if ain is zero, the weight is not changed

 The changes can be calculated straightforwardly, but do they lead to
convergence on a solution to a problem?

a2

a0 a1

w20 w21

111
101
110
000

a2a1a0

Classification problem

!

The error, " = (t
out
a

out
)

$% = #&"

$w = &"a
in

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 27

Learning OR continued …

 Recall the convergence rule: And the net: a2

a0 a1

0.2 0.1

!

" =1

1.3

0.7

0.6

0.0

1.3

0.1

0.2

0.0

Σ

0000110.00.60.71 1

0000110.00.60.71 0

0000110.00.60.70 1

0000000.00.60.70 0

0000110.00.60.71 1

0.50-0.51.0100.50.10.70 1

00.5-0.51.0101.00.10.21 0

0000001.00.10.20 0

∆w21∆w20∆θδt2a2θw21w20a0 a1

!

" = 0.5

!

aout = a
2

= w
2 ja j

j

"

!

The error, " = (t
out
a

out
)

$% = #&"

$w = &"a
in

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 28

Learning in a nutshell

 Patterns are vectors on [0,1]
 Input pattern is passed through a weight matrix
 Net values are summed and squashed to [0,1]
 Output pattern is compared to target pattern
 Error between output and target is propagated back through weight matrix
 Weights are changed to minimize error

© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 29

Summary
 Connectionism is inspired by information processing in the brain

 Models typically contain several layers of processing units
 Units correspond to a neuron (or group of neurons)
 Units sum weighted inputs from previous layers, and compute activation
 Output activation is passed to units of the next layer

 An input stimulus causes a “pattern of activation” on the first layer
 Activations are then propagated through the network
 The influence of one unit upon another is determined by the weight
 The output response is the “pattern of activation” on the final layer

 Learning aims to reduce the discrepancy between actual and desired
output patterns of activation
 The Delta rule iteratively changes the weights of successive epochs
 Training is complete when error is sufficiently reduced

