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Bl Context units are direct copies of hidden

units, the connections are not modifiable A
d Connections are one-to-one :
d Weights are fixed at 1.0 V.
B Connections from context units to hidden \

units are modifiable; weights are learned
just like all other connections

[ Training is done via the backpropagation learning algorithm

B Solution: let time be represented by its affect on processing
@ Dynamic properties which are responsive to temporal sequences
Q Memory

B Dynamical systems: “any system whose behaviour at one point in time
depends in some way on its state at an earlier point in time”

Q See: Rethinking Innateness, Chapter 4.
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B Categories of lexical items

B Template for sentence generator

Category Examples
NOUN-HUM man,woman
NOUN-ANIM cat,mouse
NOUN-INANIM book,rock
NOUN-AGRESS dragon,monster
NOUN-FRAG glass,plate
NOUN-FOOD cookie,sandwich
VERB-INTRAN think,sleep
VERB-TRAN see,chase
VERB-AGPAT move,break
VERB-PERCEPT smell,see

VERB-DESTROY
VERB-EAT

break,smash

eat

© Matthew W. Crocker

WORD 1 WORD 2 WORD 3
NOUN-HUM VERB-EAT NOUN-FOOD
NOUN-HUM VERB-PERCEPT NOUN-INANIM
NOUN-HUM VERB-DESTROY NOUN-FRAG
NOUN-HUM VERB-INTRAN
NOUN-HUM VERB-TRAN NOUN-HUM
NOUN-HUM VERB-AGPAT NOUN-ANIM
NOUN-HUM VERB-AGPAT
NOUN-ANIM VERB-EAT NOUN-FOOD
NOUN-ANIM VERB-TRAN NOUN-ANIM
NOUN-ANIM VERB-AGPAT NOUN-INANIM
NOUN-ANIM VERB-AGPAT
NOUN-INANIM VERB-AGPAT
NOUN-AGRESS VERB-DESTROY NOUN-FRAG
NOUN-AGRESS VERB-EAT NOUN-HUM
NOUN-AGRESS VERB-EAT NOUN-ANIM
NOUN-AGRESS VERB-EAT NOUN-FOOD
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B Output should be compared to expected frequencies

B Frequencies are determined from the training corpus

4 Each word (w,,,,) in a sentence is compared with all other sentences that
are up to that point identical (comparison set)
+ Woman smash plate
+ Woman smash glass
+ Woman smash plate
+ ...
Q We then compute the vector of the probability of occurrence for each
following word: this is the target, output for a particular input sequence
Q Vector: {0 0 0 p(plate|smash, woman) 0 0 p(glass|smash, woman) 0 ... 0}

A This is compared to the output vector of the network, when the word
smash is presented following the word woman.

B \When performance is evaluated this way, RMS is 0.053

[ Mean cosine of the angle between output and probability: 0.916

+ This corrects for the fact that the probability vector will necessarily have a
magnitude of 1, while the output activation vector need not.
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B Lexical items with similar

properties are grouped
lower in the tree

The network has discovered:
O Nouns vs. Verbs

O Verb subcategorization

U Animates/inanimates

O Humans/Animals

U Foods/Breakables/Objects

The network discovers
ordering possibilities for
various work categories and
“subcategories”
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B Both symbolic systems and connectionist networks use
representations to refer to things:
d Symbolic systems use names
+ Symbols typically refer to well-defined classes or categories of entities
d Networks use patterns of activations across hidden-units
+ Representations are highly context dependent

B The central role of context implies a distinct representation of John, for
every context in with John occurs (which is an infinite number of John;)

B Claim: distributed representations + context provides a solution to the
representation of type/token differences
A Distributed representations can learn new concepts as patterns of
activation across a fixed number of hidden unit nodes

+ A fixed number of analog units can in principle learn an infinite number of
concepts

[ Since SRN hidden units encode prior context, the hidden layer can in
principle provide an infinite memory
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B In practice the number of concepts and memory is bounded
Q Units are not truly continuous (e.g. numeric precision on the computer)

[ Repeated application of logistic function to the memory results in
exponential decay

A Training environment may not be optimal for exploiting network capacity
A Actual representational capacity remains an open question
B The sentence processing network developed representations reflecting
aspects of the word’s meaning and grammatical category

Q Apparent in the similarity structure of the “averaged” internal representation
of each word: the network’s representation of the word types

B The network also distinguishes between specific occurrences of words
Q The internal representation for each token of a word are very similar
 But do subtly distinguish between the same word in different contexts

B Thus SRNs provide a potentially interesting account of the type-token
distinction, which differs from the indexing or binding operations of
symbolic systems.
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Clustering of word “tokens”

B Hierarchical clustering of specific occurrences of BOY and GIRL
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B Some problems change their nature when expressed temporally:
Q E.g. sequential XOR developed frequency sensitive units
B Time varying error signal can be a clue to temporal structure:
A Lower error in prediction suggests structure exists
B Increased sequential dependencies don’t result in worse performance:
A Longer, more variable sequences were successfully learned
A Also, the network was able to make partial predictions (e.g. “consonant”)
B The representation of time and memory is task dependent:
[ Networks intermix immediate task, with performing a task over time
[ No explicit representation of time: rather “processing in context”
d Memory is bound up inextricably with the processing mechanisms
B Representation need not be flat, atomistic or unstructured:
[ Sequential inputs give rise to “hierarchical” internal representations

“SRNs can discover rich representations implicit in many tasks,
including structure which unfolds over time”
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B \What is the nature of the linguistic representations?
 Localist representations seem too limited (fixed and simplistic)
A Distributed are poorly understood, but greater capacity, can be learned

B How can complex structural relationships such as constituency be
represented? Consider “noun” versus “subject” versus “role™:

Q The boy broke the window
d The rock broke the window
d The window broke

B How can the “open-ended” nature of language be accommodated by a
fixed resource system?

 Especially problematic for localist representations

B In a famous article, Fodor & Pylyshyn argue that connectionist models:
A Cannot encode for the fully compositional structure/nature of language
@ Cannot provide for the open-ended generative capacity
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B Construct a language, generated by a grammar which enforces diverse
linguistic constraints:

[ Subcategorisation
Q Recursive embedding
A Long-distance dependencies
B Training the network:
A Prediction task
[ Structure of the training data is necessary

B Assess the performance:
[ Evaluation of predictions (as in ElIman 1990), not RMS error

A Cluster analysis? Only really informs us of the similarity of words, not the
dynamics of processing

[ Principal component analysis: permits us to investigate the role of specific
hidden units
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B So far, we have seen how SRNs can
find structure in sequences

B How can complex structural relationships
such as constituency be represented?

B The Stimuli:

A Lexicon of 23 items
 Encoded orthogonally, in 26 bit vector

26 units
.

10 units
A

B Grammar: 10 units 70 units
= SNPVP* A
= NP - PropN|N|NRC 26 units
= VPV (NP)

= RC = who NP VP | who VP (NP)

= N =>boy | girl | cat | dog | boys | girls | cats | dogs

= PropN = John | Mary

= V= chase | feed | see | hear | walk |live | chases | feeds | sees | hears | walks | lives

@ Number agreement, verb argument patterns
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B Verb subcategorization
 Transitives: hit, feed
 Optional transitives: see, hear
Q Intransitives: walk, live

B [nteraction with relative clauses:

" Dog yho chases cat S€€S 9irl

" DOg yho cat chases S€€S 9"
Q Agreement can span arbitrary distance

A Subcategorization doesn’t always hold (superficially)

B Recursion: Boys \,hq girls \yho dogs chase S€€ hear

B Viable sentences: where should end of sentence occur?
Q Boys see (.) dogs (.) who see (.) girls (.) who hear (.) .

B Words are not explicitly encoded for number, subcat, or category
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B At any given point, the training set contained 10000 sentences, which
were presented to the network 5 times
B The composition of sentences varied over time:

Q Phase 1: Only simple sentences (no relative clauses)
+ 34,605 words forming 10000 sentences

Q Phase 2: 25% complex and 75% simple
+ Sentence length from 3-13 words, mean: 3.92

Q Phase 3: 50% complex, 50% simple, mean sentence length 4.38
Q Phase 4: 75% complex, 25% simple, max: 16, mean: 6

B WHY? Pilot simulations showed the network was unable to learn the
task when given the full range of complex data from the beginning.

B Focussing on simpler data first, the network learned quickly, and was
then able to learn the more complex patterns.

B Earlier simple learning, usefully constrained later learning
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B Weights are frozen and tested on a novel set of data (as in phase 4).

B Since the solution is non-deterministic, the network’s outputs were
compared to the context-dependent likelihood vector of all words
following the current input (as done in the previous simulation)

A Error was 0.177, mean cosine: 0.852
A High level of performance in prediction
B Performance on specific inputs
B Simple agreement:

BOY .. BOYS ..

u r{’*’:{x ‘uf’f.,

5
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Subcategorization

B Intransitive: "“Boy lives ...”

O Must be a sentence, period
expected

B Optional: “Boy sees ...”
O Can be followed by either a period,
d Or some NP

B Transitive: “Boy chases ...”
U Requires some object

© Matthew W. Crocker
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Processing complex sentences

B “boys who mary chases feed cats”

U Long distance
+ Agreement: Boys ... feed
+ Subcategorization: chases is transitive but in a relative clause
+ Sentence end: all outstanding “expectations” must be resolved
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B SRNs are trained on the prediction task:
Q “Self-supervised learning”: no other teacher required

B Prediction forces the network to discover regularities in the temporal
order of the input

B Validity of the the prediction tasks:
Q It is clearly not the “goal” of linguistic competence
A But there is evidence that people can/do make predictions
[ Violated expectation results in distinct patterns of brain activity (ERPS)

B If children do make predictions, which are then falsified, this might
constitute an indirect form of negative evidence, required for language
learning.
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B Learning was only possible when the network was forced to begin with
simpler input
Q This effectively restricted the range of data to which the networks were
exposed during initial learning

 Contrasts with other results showing the entire dataset is necessary to
avoid getting stuck in local minima (e.g. XOR)

B This behaviour partially resembles that of children:

A Children do not begin by mastering language in all its complexity

d They begin with simplest structures, incrementally building their “grammar”
B But the simulation achieves this by manipulating the environment:

[ This does not seem an accurate model of the situation in which children
learn language

Q While adults do modify their speech, it is not clear they make such
grammatical modifications

A Children hear all exemplars of language from the beginning
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B Limitations of the simulations/results:
d Memory capacity remains un-probed

[ Generalisation is not really tested

+ Can the network inferentially extend what is known about the types of NPs
learned to NPs with different structures

QA Truly a “toy” in terms of real linguistic complexity and subtlety

+ E.g. lexical ambiguity, verb-argument structures, structural complexity and
constraints

B Successes
[ Representations are distributed, which means less rigid resource bounds

[ Context sensitivity, but can respond to contexts which are more
“abstractly” defined

+ Thus can exhibit more general, abstract behaviour
+ Symbolic models are primarily context insensitive

B Connectionist models begin with local, context sensitive observations
B Symbolic models begin with generalisation and abstractions
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While it's not the case that the environment changes, it's true that the
child changes during the language acquisition period

Solution: keep the environment constant, but allow the network to
undergo change during learning

Incremental memory:
[ Evidence of a gradual increase in memory and attention span in children
A In the SRN, memory is supplied by the “context” units

d Memory can be explicitly limited by depriving the network, periodically,
access to this feedback

In a second simulation, training began with limited memory span which
was gradually increased:

A Training began from the outset with the full “adult” language (which was
previously unlearnable)
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Bl Phase 1:
[ Training on corpus generated from the entire grammar

 Recurrent feedback was eliminated after every 3 or 4 words, by setting all
context units to 0.5

A Longer training phase (12 epochs, rather than 5)

Bl Phase 2:
[ New corpus (to avoid memorization)
@ Memory window increased to 4-5 words
d 5 epochs

B Phase 3: 5-6 word window
B Phase 4: 6-7 word window
B Phase 5: no explicit memory limitation implemented

B Performance: as good as on the previous simulation
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B Hidden units permit the network to derive a functionally-based
representation, in contrast to a form-based representation of inputs

B Various dimensions of the internal representation were used for:
A Individual words, category, number, grammatical role, level of embedding,

and verb argument type
A The high-dimensionality of the hidden unit vectors (70 in this simulation)

makes direct inspection difficult

B Solution: Principal Component Analysis can be used to identify which
dimensions of the internal state represent these different factors

[ This allows us to visualise the movement of the network through a state
space for a particular factor, by discovering which units are relevant
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B Suppose we’re interested in analysing a network with 3 hidden units and 4
patterns of activation, corresponding to: boyg,, girl,;, DOy, girlyy,

B Cluster analysis might reveal the following structure:

‘_bOYsui'.‘
O But nothing of the subj/obj representation is revealed — bOY

B [f we look at the entire space, however, we can

get more information about the representations: —
— Qitl oy
®
9ileo L gitl oy
Qirl sy :
HU3
Wi_
— ® oy
e "y
meﬂmj‘. \}U;\‘b\o&-

B Since visualising more than 3 dimensions is difficult, PCA permits us to identify
which “units” account for most of the variation.

Q Reveals partially “localist” representations in the “distributed” hidden units
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Examples of Principal Components: 1

B Agreement

[ Boy who boys chase chases boy
[ Boys who boys chase chase boy

B The 2nd principal component
encodes agreement in the main

clause
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Examples of Principal Components: 2

B Transitivity
Q Boy chases boy
 Boy sees boy
Q Boy walks

B Two principal components: 1 & 3

B PCA1:
@ Nouns on the right
Q Verbs left

B PCA3:
A Intrans: low
A Optional trans: mid
A Transitive: high

© Matthew W. Crocker

1.0

L5

a0

QF

AL

- . b?"
socs, S
/ bay
/
/
\
\ y
' /
./.
".. -'{.’
\ A
’-\' walks]SY
\' 5\
\beyle
l"-
‘ooy)s
T
c 1 2
CA1

Computational Psycholinguistics - Winter 2008

26



Examples of Principal Components:
B Right embedding: _ ~
Q Boy chases boy
Q Boy who chases boy a by
chases boy | /_,,7.,,,,3
Q Boy chases boy who o | ey
chases boy - . </,./" J’_‘_:ff.:;":’-':,j:’ pi
d Boy chases boy who chases - - e m,’/’
boy who chases boy ERE 2 z- \ I R
N \ . !,/ ",' .
‘ NN/ N
< | \\cﬂuu // "‘\\‘
B PCA11and1: | o \ / ‘\\
Q “Embedded clause are | v o
shifted to the left” o
d “RCs appear nearer the o i
noun they modify” N s B
|2 1 L 1 2 p
} FCA T
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B We can use "Principal Component Analysis™ to examine particularly
important dimensions of the networks solutions more globally:

[ Sample of the points visited in the hidden unit space as the network
processes 1000 random sentences

B The results of PCA after training:
Training on the full data set Incremental training

o — -'\' '. : ‘v “
e, L o e ) R
;:"‘ ) :"'-‘0 ‘: :‘2\ '.t\i; \.“Q‘;“ ::; -
: 5‘-:; f..lfif 3 stw: *a" SHNet RO e
AT e L -

: .::‘.t“:;:.;-f-z'o':-"\‘\‘i{\\\“‘

The right plot reveals more clearly “organised” use of the state space
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B To solve the task, the network must learn the sources of variance
(number, category, verb-type, and embedding)
B If the network is presented with the complete corpus from the start:

Q The complex interaction of these factors, long-distance dependencies,
makes discovering the sources of variance difficult

A The resulting solution is imperfect, and internal representation don’t reflect
the true sources of variance

B \When incremental learning takes place (in either form):

A The network begins with exposure to only some of the data
+ Limited environment: simple sentences only
+ Limited mechanisms: simple sentences + noise (hence longer training)

A Only the first 3 sources of variance, and no long-distance dependencies

B Subsequent learning is constrained (or guided) by the early learning of,
and commitment to, these basic grammatical factors

A Thus initial memory limitations permit the network to focus on learning the
subset of facts which lay the foundation for future success
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B Networks rely on the representativeness of the training set:

QA Small samples may not provide sufficient evidence for generalisation
+ Possibly poor estimates of the population’s statistics
+ Some generalisations may be possible from a small sample, but are later ruled out

A Early in training the sample is necessarily small

B The representation of experience:
d Exemplar-based learning models store all prior experience, and such early data can
then be re-accessed to subsequently help form new hypotheses

[ SRNs do not do this: each input has its relatively minor effect on changing the
weights (towards a solution), and then disappears. Persistence is only in the
change made to the network.

B Constraints on new hypotheses, and continuity of search:
A Changes in a symbolic system may lead to suddenly different solutions
+ This is often ok, if it can be checked against the prior experience

A Gradient descent learning makes it difficult for a network to make dramatic changes
in its solution: search is continuous, along the error surface

@ Once committed to an erroneous generalisation, the network might not escape from
a local minima
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B Networks are most sensitive during the early period of learning:
A Nonlinearity (the logistic activation function) means that weight
modifications are less likely as learning progresses
+ Input is “squashed” to a value between 0 and 1

+ Nonlinearity means that the function is most sensitive for inputs around 0
(output is 0.5)

+ Nodes are typically initialised randomly about 0, so netinput is also near O
+ Thus the network is highly sensitive
 Sigmoid function become “saturated” for large +/- inputs
+ As learning proceeds units accrue activation
+ Weight change is a function of the error and slope of the activation function

+ This will become smaller as units’ activations become saturated, regardless of
how large the error is

[ Thus escaping from local minima becomes increasingly difficult

B Thus, most learning occurs when information is least reliable
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B Learning language is difficult because:

A Learning linguistic primitives is obscured by the full complexity of
grammatical structure

A Learning complex structure is difficult because the network lacks
knowledge of the basic primitive representations
B Incremental learning shows how a system can learn a complex system
by having better initial data:

A Initially impoverished memory provides a natural filter for complex
structures early in learning so the network can learn the basic forms of
linguistic regularities

 As the memory is expanded, the network can use what it knows to handle
increasingly complex inputs

 Noise, present in the early data, tends to keep the network in a state of
flux, helping it to avoid committing to false generalisations
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B Finding structure in time/sequences:
[ Learns dependencies spanning more than a single transition
 Learns dependencies of variable length
d Learns to make partial predictions from structure input
+ Prediction of consonants, or particular lexical classes
B Learning from various input encodings:
A Localist encoding: XOR and 1 bit per word

A Distributed:
+ Structured: letter sequences where consonants have a distinguished feature
+ Random: words mapped to random 5 bit sequence

B Learns both general categories (types) and specific behaviours
(tokens) based purely on distributional evidence

B \What are the limitations of SRNs?
A Do they simply learn co-occurrences and contingent probabilities?
A Can they learn more complex aspects of linguistic structure?
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B Implicit representation of time, reflected in the dynamic behaviour of
the network: not explicitly encoded.

B The importance of starting small:

 Learning the more complex language was only possible by first learning
simpler aspects of the grammar

B Outstanding problems:
A Is grammatical structure really being learned?
A Full linguistic complexity
+ Ambiguity: lexical, syntactic, semantic

+ Structural: subjacency, islands, extraction, ...
+ Scale: large lexicons, large structures

B Statistical/Probabilistic Models
[ Connectionist models have a highly probabilistic nature:
+ Learn regularities in a way which is sensitive to and reflect frequency
d We can model language by directly applying probabilistic theory

d We can combine symbolic and probabilistic approaches to achieve hybrid
symbolic/sub-symbolic systems.
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