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SRNs
 Context units are direct copies of hidden

units, the connections are not modifiable
 Connections are one-to-one
 Weights are fixed at 1.0

 Connections from context units to hidden
units are modifiable; weights are learned
just like all other connections
 Training is done via the backpropagation learning algorithm

 Solution: let time be represented by its affect on processing
 Dynamic properties which are responsive to temporal sequences
 Memory

 Dynamical systems:  “any system whose behaviour at one point in time
depends in some way on its state at an earlier point in time”
 See:  Rethinking Innateness, Chapter 4.
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Structure of Training Environment
 Categories of lexical items  Template for sentence generator

eatVERB-EAT

break,smashVERB-DESTROY

smell,seeVERB-PERCEPT

move,breakVERB-AGPAT

see,chaseVERB-TRAN

think,sleepVERB-INTRAN

cookie,sandwichNOUN-FOOD

glass,plateNOUN-FRAG

dragon,monsterNOUN-AGRESS

book,rockNOUN-INANIM

cat,mouseNOUN-ANIM

man,womanNOUN-HUM

ExamplesCategory

NOUN-HUMVERB-EATNOUN-AGRESS

NOUN-FOODVERB-EATNOUN-AGRESS

NOUN-ANIMVERB-EATNOUN-AGRESS

NOUN-FRAGVERB-DESTROYNOUN-AGRESS

VERB-AGPATNOUN-INANIM

VERB-AGPATNOUN-ANIM

NOUN-INANIMVERB-AGPATNOUN-ANIM

NOUN-ANIMVERB-TRANNOUN-ANIM

NOUN-FOODVERB-EATNOUN-ANIM

VERB-AGPATNOUN-HUM

NOUN-ANIMVERB-AGPATNOUN-HUM

NOUN-HUMVERB-TRANNOUN-HUM

VERB-INTRANNOUN-HUM

NOUN-FRAGVERB-DESTROYNOUN-HUM

NOUN-INANIMVERB-PERCEPTNOUN-HUM

NOUN-FOODVERB-EATNOUN-HUM

WORD 3WORD 2WORD 1
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Calculating Performance
 Output should be compared to expected frequencies
 Frequencies are determined from the training corpus

 Each word (winput) in a sentence is compared with all other sentences that
are up to that point identical (comparison set)
 Woman smash plate
 Woman smash glass
 Woman smash plate
 …

 We then compute the vector of the probability of occurrence for each
following word:  this is the target, output for a particular input sequence

 Vector:  {0 0 0 p(plate|smash, woman) 0 0 p(glass|smash, woman) 0 … 0 }
 This is compared to the output vector of the network, when the word

smash is presented following the word woman.
 When performance is evaluated this way, RMS is 0.053

 Mean cosine of the angle between output and probability: 0.916
 This corrects for the fact that the probability vector will necessarily have a

magnitude of 1, while the output activation vector need not.
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Cluster analysis:
 Lexical items with similar

properties are grouped
lower in the tree

 The network has discovered:
 Nouns vs. Verbs
 Verb subcategorization
 Animates/inanimates
 Humans/Animals
 Foods/Breakables/Objects

 The network discovers
ordering possibilities for
various work categories and
“subcategories”
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Type/Token distinction

 Both symbolic systems and connectionist networks use
representations to refer to things:
 Symbolic systems use names

 Symbols typically refer to well-defined classes or categories of entities
 Networks use patterns of activations across hidden-units

 Representations are highly context dependent

 The central role of context implies a distinct representation of John, for
every context in with John occurs (which is an infinite number of Johni)

 Claim:  distributed representations + context provides a solution to the
representation of type/token differences
 Distributed representations can learn new concepts as patterns of

activation across a fixed number of hidden unit nodes
 A fixed number of analog units can in principle learn an infinite number of

concepts
 Since SRN hidden units encode prior context, the hidden layer can in

principle provide an infinite memory
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Type/Token continued
 In practice the number of concepts and memory is bounded

 Units are not truly continuous (e.g. numeric precision on the computer)
 Repeated application of logistic function to the memory results in

exponential decay
 Training environment may not be optimal for exploiting network capacity
 Actual representational capacity remains an open question

 The sentence processing network developed representations reflecting
aspects of the word’s meaning and grammatical category
 Apparent in the similarity structure of the “averaged” internal representation

of each word:  the network’s representation of the word types
  The network also distinguishes between specific occurrences of words

 The internal representation for each token of a word are very similar
 But do subtly distinguish between the same word in different contexts

 Thus SRNs provide a potentially interesting account of the type-token
distinction, which differs from the indexing or binding operations of
symbolic systems.
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Clustering of word “tokens”

 Hierarchical clustering of specific occurrences of BOY and GIRL
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Summary of Elman 1990

 Some problems change their nature when expressed temporally:
 E.g. sequential XOR developed frequency sensitive units

 Time varying error signal can be a clue to temporal structure:
 Lower error in prediction suggests structure exists

 Increased sequential dependencies don’t result in worse performance:
 Longer, more variable sequences were successfully learned
 Also, the network was able to make partial predictions (e.g. “consonant”)

 The representation of time and memory is task dependent:
 Networks intermix immediate task, with performing a task over time
 No explicit representation of time:  rather “processing in context”
 Memory is bound up inextricably with the processing mechanisms

 Representation need not be flat, atomistic or unstructured:
 Sequential inputs give rise to “hierarchical” internal representations

“SRNs can discover rich representations implicit in many tasks,
including structure which unfolds over time”
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Challenges for a connectionist account

 What is the nature of the linguistic representations?
 Localist representations seem too limited (fixed and simplistic)
 Distributed are poorly understood, but greater capacity, can be learned

 How can complex structural relationships such as constituency be
represented?  Consider “noun” versus “subject” versus “role”:
 The boy broke the window
 The rock broke the window
 The window broke

 How can the “open-ended” nature of language be accommodated by a
fixed resource system?
 Especially problematic for localist representations

 In a famous article, Fodor & Pylyshyn argue that connectionist models:
 Cannot encode for the fully compositional structure/nature of language
 Cannot provide for the open-ended generative capacity
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Learning Linguistic Structure

 Construct a language, generated by a grammar which enforces diverse
linguistic constraints:
 Subcategorisation
 Recursive embedding
 Long-distance dependencies

 Training the network:
 Prediction task
 Structure of the training data is necessary

  Assess the performance:
 Evaluation of predictions (as in Elman 1990), not RMS error
 Cluster analysis?  Only really informs us of the similarity of words, not the

dynamics of processing
 Principal component analysis:  permits us to investigate the role of specific

hidden units
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Learning Constituency:  Elman (1991)

 So far, we have seen how SRNs can
find structure in sequences

 How can complex structural relationships
such as constituency be represented?

 The Stimuli:
 Lexicon of 23 items
 Encoded orthogonally, in 26 bit vector

 Grammar:
 S  NP VP “.”
 NP  PropN | N | N RC
 VP  V (NP)
 RC  who NP VP | who VP (NP)
 N  boy | girl | cat | dog | boys | girls | cats | dogs
 PropN  John | Mary
 V  chase | feed | see | hear | walk |live | chases | feeds | sees | hears | walks | lives
 Number agreement, verb argument patterns

10 units 70 units

10 units

70 units

26 units

26 units
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Training

 Verb subcategorization
 Transitives:  hit, feed
 Optional transitives:  see, hear
 Intransitives:  walk, live

 Interaction with relative clauses:
 Dog who chases cat sees girl
 Dog who cat chases sees girl

 Agreement can span arbitrary distance
 Subcategorization doesn’t always hold (superficially)

 Recursion: Boys who girls who dogs chase see hear

 Viable sentences:  where should end of sentence occur?
 Boys see (.) dogs (.) who see (.) girls (.) who hear (.) .

 Words are not explicitly encoded for number, subcat, or category
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Training

 At any given point, the training set contained 10000 sentences, which
were presented to the network 5 times

 The composition of sentences varied over time:
 Phase 1:  Only simple sentences (no relative clauses)

 34,605 words forming 10000 sentences
 Phase 2:  25% complex and 75% simple

 Sentence length from 3-13 words, mean: 3.92
 Phase 3:  50% complex, 50% simple, mean sentence length 4.38
 Phase 4:  75% complex, 25% simple, max: 16, mean: 6

 WHY?  Pilot simulations showed the network was unable to learn the
task when given the full range of complex data from the beginning.

 Focussing on simpler data first, the network learned quickly, and was
then able to learn the more complex patterns.

 Earlier simple learning, usefully constrained later learning
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Performance

 Weights are frozen and tested on a novel set of data (as in phase 4).
 Since the solution is non-deterministic, the network’s outputs were

compared to the context-dependent likelihood vector of all words
following the current input (as done in the previous simulation)
 Error was 0.177, mean cosine: 0.852
 High level of performance in prediction

 Performance on specific inputs
 Simple agreement:
     BOY .. BOYS ..
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Subcategorization
 Intransitive: “Boy lives …”

 Must be a sentence, period
expected

 Optional: “Boy sees …”
 Can be followed by either a period,
 Or some NP

 Transitive: “Boy chases …”
 Requires some object
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Processing complex sentences
 “boys who mary chases feed cats”

 Long distance
 Agreement:  Boys … feed
 Subcategorization:  chases is transitive but in a relative clause
 Sentence end:  all outstanding “expectations” must be resolved
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Prediction reconsidered

 SRNs are trained on the prediction task:
 “Self-supervised learning”:  no other teacher required

 Prediction forces the network to discover regularities in the temporal
order of the input

 Validity of the the prediction tasks:
 It is clearly not the “goal” of linguistic competence
 But there is evidence that people can/do make predictions
 Violated expectation results in distinct patterns of brain activity (ERPs)

 If children do make predictions, which are then falsified, this might
constitute an indirect form of negative evidence, required for language
learning.
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Results

 Learning was only possible when the network was forced to begin with
simpler input
 This effectively restricted the range of data to which the networks were

exposed during initial learning
 Contrasts with other results showing the entire dataset is necessary to

avoid getting stuck in local minima (e.g. XOR)
 This behaviour partially resembles that of children:

 Children do not begin by mastering language in all its complexity
 They begin with simplest structures, incrementally building their “grammar”

 But the simulation achieves this by manipulating the environment:
 This does not seem an accurate model of the situation in which children

learn language
 While adults do modify their speech, it is not clear they make such

grammatical modifications
 Children hear all exemplars of language from the beginning
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General results

 Limitations of the simulations/results:
 Memory capacity remains un-probed
 Generalisation is not really tested

 Can the network inferentially extend what is known about the types of NPs
learned to NPs with different structures

 Truly a “toy” in terms of real linguistic complexity and subtlety
 E.g. lexical ambiguity, verb-argument structures, structural complexity and

constraints

 Successes
 Representations are distributed, which means less rigid resource bounds
 Context sensitivity, but can respond to contexts which are more

“abstractly” defined
 Thus can exhibit more general, abstract behaviour
 Symbolic models are primarily context insensitive

 Connectionist models begin with local, context sensitive observations
 Symbolic models begin with generalisation and abstractions
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A Second Simulation

 While it’s not the case that the environment changes, it’s true that the
child changes during the language acquisition period

 Solution:  keep the environment constant, but allow the network to
undergo change during learning

 Incremental memory:
 Evidence of a gradual increase in memory and attention span in children
 In the SRN, memory is supplied by the “context” units
 Memory can be explicitly limited by depriving the network, periodically,

access to this feedback
 In a second simulation, training began with limited memory span which

was gradually increased:
 Training began from the outset with the full “adult” language (which was

previously unlearnable)
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Training with Incremental Memory

 Phase 1:
 Training on corpus generated from the entire grammar
 Recurrent feedback was eliminated after every 3 or 4 words, by setting all

context units to 0.5
 Longer training phase (12 epochs, rather than 5)

 Phase 2:
 New corpus (to avoid memorization)
 Memory window increased to 4-5 words
 5 epochs

 Phase 3:  5-6 word window
 Phase 4:  6-7 word window
 Phase 5:  no explicit memory limitation implemented

 Performance:  as good as on the previous simulation
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Analysing the solution

 Hidden units permit the network to derive a functionally-based
representation, in contrast to a form-based representation of inputs

 Various dimensions of the internal representation were used for:
 Individual words, category, number, grammatical role, level of embedding,

and verb argument type
 The high-dimensionality of the hidden unit vectors (70 in this simulation)

makes direct inspection difficult

 Solution:  Principal Component Analysis can be used to identify which
dimensions of the internal state represent these different factors
 This allows us to visualise the movement of the network through a state

space for a particular factor, by discovering which units are relevant
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Principal Component Analysis
 Suppose we’re interested in analysing a network with 3 hidden units and 4

patterns of activation, corresponding to:  boysubj, girlsubj, boyobj, girlobj
 Cluster analysis might reveal the following structure:

 But nothing of the subj/obj representation is revealed
 If we look at the entire space, however, we can

get more information about the representations:

 Since visualising more than 3 dimensions is difficult, PCA permits us to identify
which “units” account for most of the variation.
 Reveals partially “localist” representations in the “distributed” hidden units
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Examples of Principal Components: 1

 Agreement
 Boy who boys chase chases boy
 Boys who boys chase chase boy

 The 2nd principal component
encodes agreement in the main
clause
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Examples of Principal Components: 2

 Transitivity
 Boy chases boy
 Boy sees boy
 Boy walks

 Two principal components: 1 & 3
 PCA 1:

 Nouns on the right
 Verbs left

 PCA 3:
 Intrans:  low
 Optional trans:  mid
 Transitive:  high
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Examples of Principal Components: 3

 Right embedding:
 Boy chases boy
 Boy who chases boy

chases boy
 Boy chases boy who

chases boy
 Boy chases boy who chases

boy who chases boy

 PCA 11 and 1:
 “Embedded clause are

shifted to the left”
 “RCs appear nearer the

noun they modify”
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PCA analysis of “Starting Small”

 We can use “Principal Component Analysis” to examine particularly
important dimensions of the networks solutions more globally:
 Sample of the points visited in the hidden unit space as the network

processes 1000 random sentences
 The results of PCA after training:
 Training on the full data set Incremental training

The right plot reveals more clearly “organised” use of the state space
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Comments

 To solve the task, the network must learn the sources of variance
(number, category, verb-type, and embedding)

 If the network is presented with the complete corpus from the start:
 The complex interaction of these factors, long-distance dependencies,

makes discovering the sources of variance difficult
 The resulting solution is imperfect, and internal representation don’t reflect

the true sources of variance
 When incremental learning takes place (in either form):

 The network begins with exposure to only some of the data
 Limited environment:  simple sentences only
 Limited mechanisms:  simple sentences + noise (hence longer training)

 Only the first 3 sources of variance, and no long-distance dependencies
 Subsequent learning is constrained (or guided) by the early learning of,

and commitment to, these basic grammatical factors
 Thus initial memory limitations permit the network to focus on learning the

subset of facts which lay the foundation for future success
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The importance of starting small
 Networks rely on the representativeness of the training set:

 Small samples may not provide sufficient evidence for generalisation
 Possibly poor estimates of the population’s statistics
 Some generalisations may be possible from a small sample, but are later ruled out

 Early in training the sample is necessarily small
 The representation of experience:

 Exemplar-based learning models store all prior experience, and such early data can
then be re-accessed to subsequently help form new hypotheses

 SRNs do not do this:  each input has its relatively minor effect on changing the
weights (towards a solution), and then disappears.  Persistence is only in the
change made to the network.

 Constraints on new hypotheses, and continuity of search:
 Changes in a symbolic system may lead to suddenly different solutions

 This is often ok, if it can be checked against the prior experience
 Gradient descent learning makes it difficult for a network to make dramatic changes

in its solution:  search is continuous, along the error surface
 Once committed to an erroneous generalisation, the network might not escape from

a local minima
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Starting small (continued)

 Networks are most sensitive during the early period of learning:
 Nonlinearity (the logistic activation function) means that weight

modifications are less likely as learning progresses
 Input is “squashed” to a value between 0 and 1
 Nonlinearity means that the function is most sensitive for inputs around 0

(output is 0.5)
 Nodes are typically initialised randomly about 0, so netinput is also near 0
 Thus the network is highly sensitive

 Sigmoid function become “saturated” for large +/- inputs
 As learning proceeds units accrue activation
 Weight change is a function of the error and slope of the activation function
 This will become smaller as units’ activations become saturated, regardless of

how large the error is
 Thus escaping from local minima becomes increasingly difficult

 Thus, most learning occurs when information is least reliable
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Conclusions

 Learning language is difficult because:
 Learning linguistic primitives is obscured by the full complexity of

grammatical structure
 Learning complex structure is difficult because the network lacks

knowledge of the basic primitive representations
 Incremental learning shows how a system can learn a complex system

by having better initial data:
 Initially impoverished memory provides a natural filter for complex

structures early in learning so the network can learn the basic forms of
linguistic regularities

 As the memory is expanded, the network can use what it knows to handle
increasingly complex inputs

 Noise, present in the early data, tends to keep the network in a state of
flux, helping it to avoid committing to false generalisations
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Summary of SRNs …

 Finding structure in time/sequences:
 Learns dependencies spanning more than a single transition
 Learns dependencies of variable length
 Learns to make partial predictions from structure input

 Prediction of consonants, or particular lexical classes
 Learning from various input encodings:

 Localist encoding:  XOR and 1 bit per word
 Distributed:

 Structured:  letter sequences where consonants have a distinguished feature
 Random:  words mapped to random 5 bit sequence

 Learns both general categories (types) and specific behaviours
(tokens) based purely on distributional evidence

 What are the limitations of SRNs?
 Do they simply learn co-occurrences and contingent probabilities?
 Can they learn more complex aspects of linguistic structure?
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Summary
 Implicit representation of time, reflected in the dynamic behaviour of

the network:  not explicitly encoded.
 The importance of starting small:

 Learning the more complex language was only possible by first learning
simpler aspects of the grammar

 Outstanding problems:
 Is grammatical structure really being learned?
 Full linguistic complexity

 Ambiguity:  lexical, syntactic, semantic
 Structural:  subjacency, islands, extraction, …
 Scale:  large lexicons, large structures

 Statistical/Probabilistic Models
 Connectionist models have a highly probabilistic nature:

 Learn regularities in a way which is sensitive to and reflect frequency
 We can model language by directly applying probabilistic theory
 We can combine symbolic and probabilistic approaches to achieve hybrid

symbolic/sub-symbolic systems.


