Computational Psycholinguistics

Lecture 12: Simple Recurrent Networks

Marshall R. Mayberry

Computerlinguistik Universität des Saarlandes

Reading: J Elman (1990). Finding structure in time. Cognitive Science, 14, 179-211.

Overview

- Two models: Single (connectionist) mechanisms account for dualroute models of "rule-like" and "exceptional" behaviour:
 - □ Reading Aloud: Models of adult performance
 - + Good performance on known and unknown words
 - + Models (normal) human behaviour (frequency x regularity, etc)
 - □ English past-tense: Models Acquisition of Verb Morphology
 - + Forming the past tense from the present
 - □ Problems: dual-route models better explain double dissociations
 - □ "Static": Map a single, isolated, input to a particular output
- Dynamical Systems: Simple Recurrent Networks
 - Sequential XOR
 - Letter sequences
 - Detecting word boundaries
 - □ Learning lexical classes
 - Acquisition of Syntax

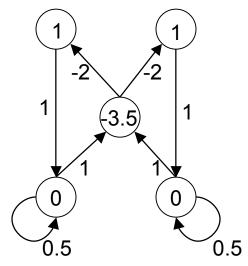
Representing Time

- Many cognitive functions involve processing sequences of inputs/outputs over time:
 - □ Sequences of motor movements
 - □ Sequences of sounds to produce a particular word
 - Sequences of words encountered incrementally
 - I We can directly represent time as "order" in the input pattern vector
 - Assumes buffering of events before processing, and processing takes place all at once (i.e. in parallel)
 - □ Maximum sequence length (duration) is fixed
 - Does not easily distinguish relative versus absolute temporal position, e.g.
 - +011100000
 - +000111000
 - Similar patterns are spatially distant (and learning such translational variance requires an external teacher)
 - We need a richer, more general representation of time

Recurrent networks

- Suppose we want a network to generate a sequence of outputs:
 - □ E.g.: AAAB
 - Consider the following network:
 - □ Inputs are linear, rest are binary threshold units:

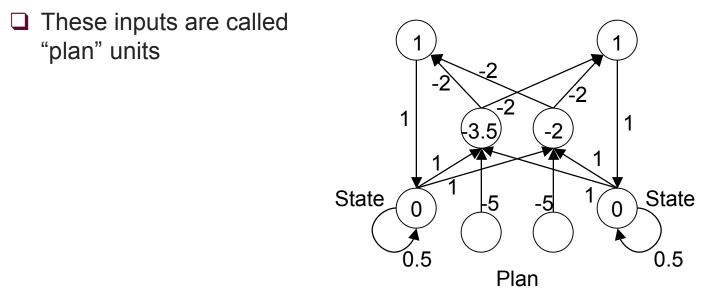
 - ✤ Negative = 0
 - □ Let A = 1 1; B = 0 0
 - □ The neg. bias of the hidden node keeps activity from being propagated during first cycles



Time	Input 1		Input 2		Hidden		Output 1		Output 2		Resp
	In	Out	In	Out	In	Out	In	Out	In	Out	
1	0+0	0	0+0	0	0-3.5	0	0+1	1	0+1	1	А
2	1+0	1	1+0	1	2-3.5	0	0+1	1	0+1	1	А
3	1+.5	1.5	1+.5	1.5	3-3.5	0	0+1	1	0+1	1	А
4	1+.75	1.75	1+.75	1.75	3.5-3.5	1	-2+1	0	-2+1	0	В

Recurrent networks with state units

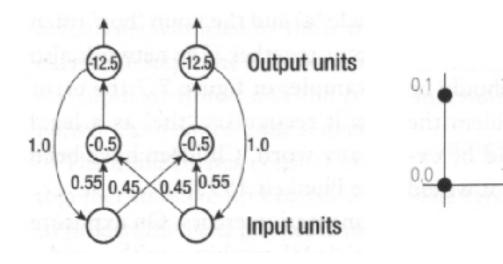
We can add inputs to the recurrent network which modulate the effect of the state units:

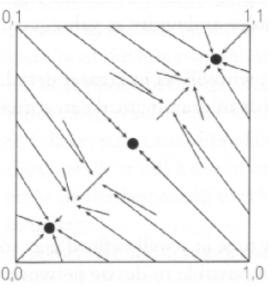


In this way inputting (0 1) results in AAAB, while inputting (1 0) results in AB

Attractors

- Some recurrent networks change over time such that the output settles into a particular state: Attractor networks
 The set of possible states are the attractors
 - Ability to model reaction times, robust to noisy input
 - Can perform an arbitrary mapping from input to output



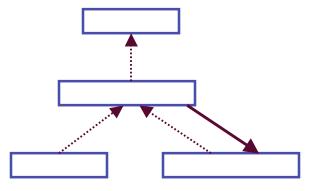


Simple Recurrent Networks

- Recurrent networks are powerful for executing and learning complex sequences, but difficult to design
- Simple recurrent networks can learn any sequence given as input
- We can tell they've learned by training them to predict the next item
- Hidden units are connected to "context" units:
 - These correspond to "state" units: they remember the state of the network on the previous time step Output Units
 - The hidden units are able to recycle information over multiple time steps Dynamic memory: Identical inputs can be treated differently depending on context

SRNs

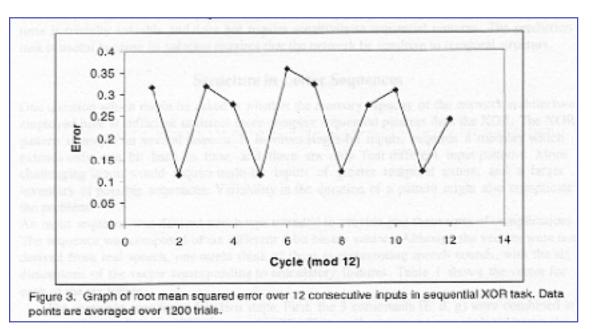
- Context units are <u>direct copies</u> of hidden units, the connections are not modifiable
 - Connections are one-to-one
 - □ Weights are fixed at 1.0
- Connections from context units to hidden units are modifiable; weights are learned just like all other connections

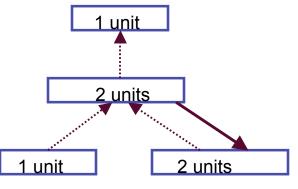


- □ Training is done via the backpropagation learning algorithm
- Solution: let time be represented by its affect on processing
 Dynamic properties which are responsive to temporal sequences
 Memory
- Dynamical systems: "any system whose behaviour at one point in time depends in some way on its state at an earlier point in time"
 See: *Rethinking Innateness*, Chapter 4.

Temporal XOR

- We know that XOR cannot be learned by a simple 1-layer network
- We can translate it into a "temporal" task by presenting input/output sequences:
 - □ Input: 10
- 101000011110101...
 - □ Output: 01000011110101?...
 - Training:
 - Construct a sequence of 3000 bits
 - □ 600 passes
 - Predict the next bit in the sequence
 - Prediction is based on both the current input and the network's previous state





Observations of XOR

- The network successfully predicts every third bit:
 - □ Correct, since other bits are random
 - □ Note: actually attempts to apply the XOR rule for each input bit

The network's solution:

- At the hidden layer, 1 unit is active when the input contains a sequence of identical elements
- □ The other unit is active when input elements alternate
- □ Thus the network has become sensitive to high/low "frequency"
- □ This is different from the static solution to the problem
- Note: the prediction task is analogous to autoassociation
 - Instead of exploiting redundancy in patterns, it must discover the temporal structure of the input

"Finding Structure in Time"

Structure in Letter Sequences

- A simple feedforward network can be trained to learn simple transitions between two adjacent inputs
- For XOR, the SRN has demonstrated the ability to learn dependencies spanning 3 adjacent inputs
 - □ Single bit inputs
 - Only 4 different patterns
- Is the memory capacity of SRN sufficient to detect more complex sequential patterns?
 - Multi-bit inputs
 - Greater temporal extent
 - □ Larger inventory of sequences
 - Imagine a simplified system of speech sounds
 - □ 3 consonants
 - □ 3 vowels
 - □ Each consonant is followed by a fixed number of a particular vowel

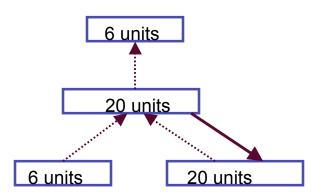
Performance

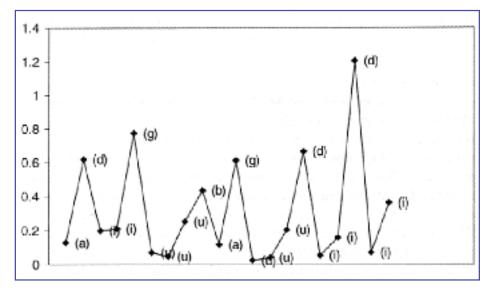
- Rules for "word" formation:
 - \Box b \rightarrow ba
 - \Box d \rightarrow dii
 - \Box g \rightarrow guuu
- The 3 consonants were randomly combined to generate a 1000 letter sequence
- The consonants were then replaced using the above rules
 - \Box dbgbdd... \rightarrow diibaguuubadiidii...
 - □ Each letter was then converted to a 6 bit distributed representation:

	Consonant	Vowel	Interrupted	High	Back	Voiced
b	1	0	1	0	0	1
d	1	0	1	1	0	1
g	1	0	1	0	1	1
а	0	1	0	0	1	1
i	0	1	0	1	0	1
u	0	1	0	1	1	1

Training & Performance

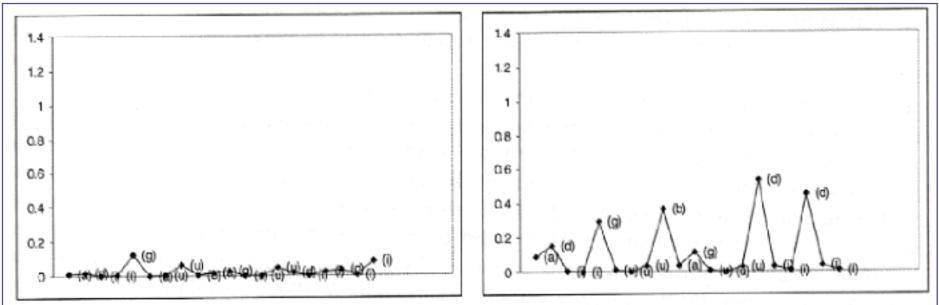
- The network architecture has 6 input and output units, with 20 hidden and context units
 - Training:
 - Each input vector is presented
 - □ Trained to predict the next input
 - □ 200 passes through the sequence
 - Tested on another random sequence (using same rules)
- Error for part of the test is shown in the graph
 - Low error predicting vowels
 - High error on consonants
- But this is the global pattern error for the 6 bit vector ...





Deeper analysis of performance

Can we predict which vowel follows a consonant, and how many (?)
 We can examine the error for the individual bits, e.g. [1] and [4]:



- Bit 1 represents the feature Consonant and bit 4 represents High
 All consonants have the same feature for Consonant, but not for High
- Thus the network has also learned that after the correct number of vowels, it expects some consonant: this requires the context units

Remarks

- The network identifies patterns of longer duration than XOR
- The pattern length is variable
- Inputs are complex: 6 bit distributed representations
- Subregularities in the vector representations enable the network to make partial predictions even where complete prediction is not possible
 - Depends, of course, on structuring of the input data

Possible conclusions:

- □ Learning extended sequential dependencies is possible
- □ If dependencies are appropriately structured, this may facilitate learning

Discovering word boundaries

- We often take for granted the existence of words, and yet for the child language learner, input is largely in the form of an unsegmented acoustic stream.
 - How do children learn to identify word boundaries in such a signal?

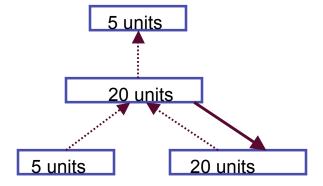
Example: Predicting the next sound

- □ Problem: discovering word boundaries in continuous speech
 - + Approximated by a corpus of continuous phonemes
- Task: network is presented with one phoneme and attempts to predict the next one
- □ Manyyearsagoaboyandgirllivedbytheseatheyplayedhappily

At time t: the network knows both the current input (phoneme at time t) and the results of processing at time t-1 (context units) Problem: discovering word boundaries in continuous speech

The network and training

- We approximate the acoustic input with an orthographic representation:
 - □ Lexicon of 15 words and a sentence generating program generated 200 sentences of length 4 to 9 words
 - Concatenated to produce a stream of 1270 words, or 4963 letters
 - Each letter converted to a random (not structured) 5 bit vector



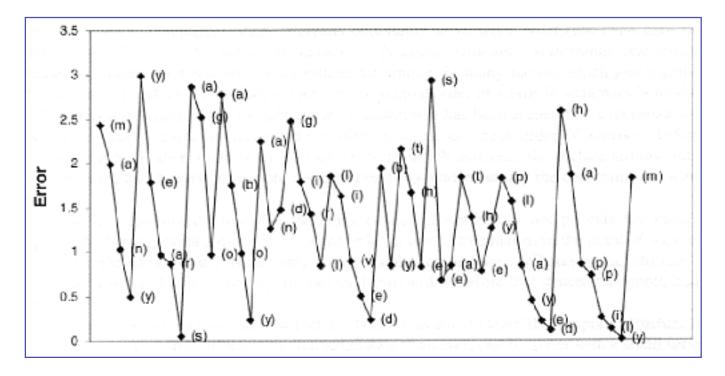
Training:

 10 complete passes through the sequence

Inp	ut	Output		
0110	m	0000	a	
0000	а	0111	n	
0111	n	1100	y	
1100	y	1100	y	
1100	y .	0010	e	
0010	0	0000	8	
0000	a	1001	r	
1001	1	1001	5	
1001	s	0000	a	
0000	a	0011	g	
0011	g	0111	0	
0111	0	0000	a	
0000	a	0001	b	
0001	b	0111	0	
0111	0	1100	y	
1100	y	0000	8	
0000	a	0111	n	
0111	n	0010	d	
0010	d	0011	g	
0011	g	0100	1	
0100	1	1001	r	
1001	r	0110	1	
0110	1	1100	y	
1100	y	sent too		

Predicting the next sound

- We can examine the error:
 - □ High error at the onset of words
 - Decreases during a word, as the sequence is increasingly predictable
 - High error at word onset demonstrates the network has discovered word boundaries



Remarks

- Network learns statistics of co-occurrences, which are graded
 - Criteria for boundaries is relative
 - □ E.g. see the ambiguity of "y"
 - Could misidentify common co-occurrences as individual words
 - + Some evidence of this in early child language acquisition: idioms = words
 - This simulation is not proposed as a model of word acquisition
 - While listeners are often able to make "predictions" from partial input, it is not the major goal of language learning
 - □ Sound co-occurrences are only part of what identifies "words"
 - □ This simulation considers only one aspect of available information
- The simulation demonstrates that there is information in the input signal which serves as a cue to word boundaries
- The simulation demonstrates the sensitivity of SRNs to this information

Discovering lexical classes from word order

- Surface word order is influenced by numerous factors
 - □ Syntax, selectional and subcategorization restrictions, discourse factors ...
 - Symbolic treatments appeal to relatively abstract, interacting rules which often depend on rich, hierarchical representations
 - + Often, these accounts assume innately specified constraints
 - Discovering information from word order might therefore be beyond the capacity of the demonstrated sequential learning abilities of SRNs
- I Maxim of empirical linguistics (Firth): "You shall know a word by the company it keeps"
 - verbs typically follow auxilliaries, and precede determiners
 - □ nouns are often preceded by determiners
 - □ Also, selectional information: verbs are followed by specific kinds of nouns
- First simulation: a sentence generator produced a set of simple (2 and 3 word) sentences using 29 lexical items from 13 "classes"

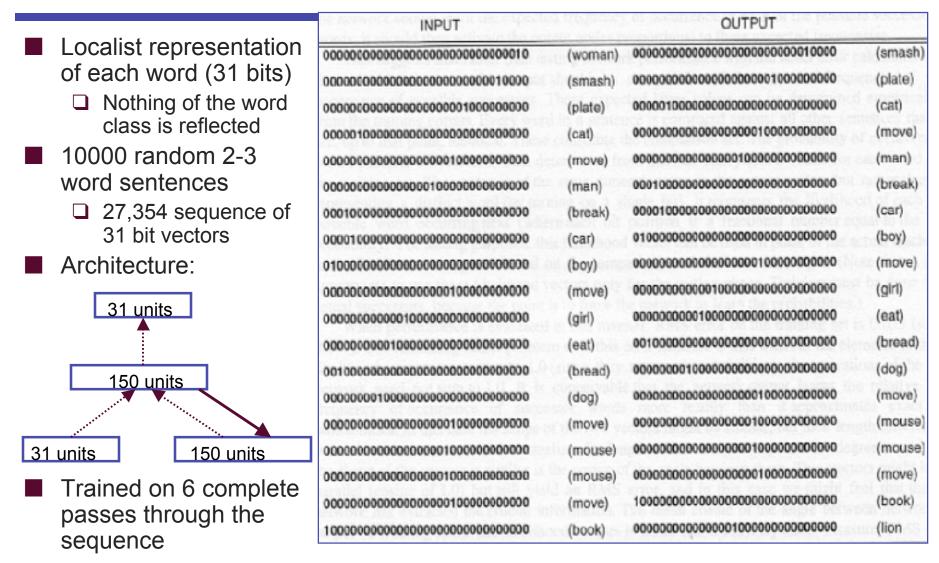
Structure of Training Environment

Categories of lexical items

Template for sentence generator

		WORD 1	WORD 2	WORD 3
Category	Examples	NOUN-HUM	VERB-EAT	NOUN-FOOD
NOUN-HUM	man,woman	NOUN-HUM	VERB-PERCEPT	NOUN-INANIM
NOUN-ANIM	cat,mouse	NOUN-HUM	VERB-DESTROY	NOUN-FRAG
NOUN-INANIM	book,rock	NOUN-HUM	VERB-INTRAN	
NOUN-AGRESS	dragon,monster	NOUN-HUM	VERB-TRAN	NOUN-HUM
NOUN-FRAG	glass,plate	NOUN-HUM	VERB-AGPAT	NOUN-ANIM
	•	NOUN-HUM	VERB-AGPAT	
NOUN-FOOD	cookie,sandwich	NOUN-ANIM	VERB-EAT	NOUN-FOOD
VERB-INTRAN	think,sleep	NOUN-ANIM	VERB-TRAN	NOUN-ANIM
VERB-TRAN	see,chase	NOUN-ANIM	VERB-AGPAT	NOUN-INANIM
VERB-AGPAT	move,break	NOUN-ANIM	VERB-AGPAT	
VERB-PERCEPT	smell,see	NOUN-INANIM	VERB-AGPAT	
VERB-DESTROY	break,smash	NOUN-AGRESS	VERB-DESTROY	NOUN-FRAG
VERB-EAT	eat	NOUN-AGRESS	VERB-EAT	NOUN-HUM
		NOUN-AGRESS	VERB-EAT	NOUN-ANIM
		NOUN-AGRESS	VERB-EAT	NOUN-FOOD

Input encoding & training



Performance

Training yields an RMS error of 0.88

- RMS error rapid drops from 15.5 to 1, by simply learning to turn all outputs off (due to sparse, localist representations)
- Prediction is non-deterministic: next input cannot be predicted with absolute certainty, but neither is it random
 - □ Word order and selectional restrictions <u>partially</u> constrain what words are likely to appear next, and which cannot appear.
 - □ We would expect the network to learn the <u>frequency</u> of occurrence of each possible successor, for a given input sequence
- Output bit should be activated for all possible following words
 - □ These output activations should be proportional to frequency
- Evaluation procedure:
 - □ Compare network output to the vector of probabilities for each possible next word, given the current word and context ...

Calculating Performance

- Output should be compared to expected frequencies
- Frequencies are determined from the training corpus
 - □ Each word (w_{input}) in a sentence is compared with all other sentences that are up to that point identical (comparison set)
 - + Woman <u>smash</u> plate

 - + ...
 - □ We then compute a vector of the probability of occurrence for each following word: this is the target, output for a particular input sequence
 - □ Vector: {0 0 0 p(plate|smash, woman) 0 0 p(glass|smash, woman) 0 ... 0 }
 - This is compared to the output vector of the network, when the word smash is presented following the word woman.
 - When performance is evaluated this way, RMS is 0.053
 - □ Mean cosine of the angle between output and probability: 0.916
 - This corrects for the fact that the probability vector will necessarily have a magnitude of 1, while the output activation vector need not.

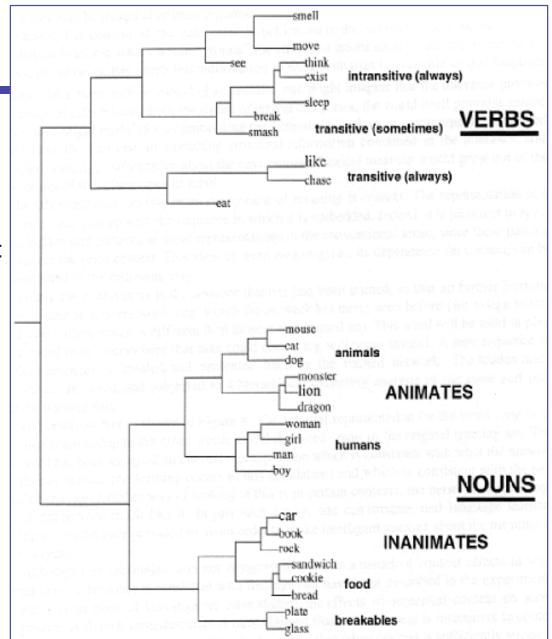
Remarks on performance

- Inputs contain no information about form class (orthogonal representations) which can be used for making predictions
 - Generalisations about the distribution of form classes, and the composition of those classes, must be learned from co-occurrence
 - ❑ We might therefore expect these generalisations to be captured by the hidden unit activations evoked by each word in its context
- After 6 passes, connection strengths were "frozen"
- The corpus was then presented to the network again: outputs ignored
 - Hidden unit activations for each input + context were saved
 - □ The hidden unit vectors for each word, in all contexts, were averaged
 - + Yielding 29, 150 bit vectors

The resulting vectors were clustered hierarchically ...

Cluster analysis:

- Lexical items with similar properties are grouped lower in the tree
 - The network has discovered:
 - Nouns vs. Verbs
 - Verb subcategorization
 - Animates/inanimates
 - Humans/Animals
 - □ Foods/Breakables/Objects
- I The network discovers ordering possibilities for various work categories and "subcategories"

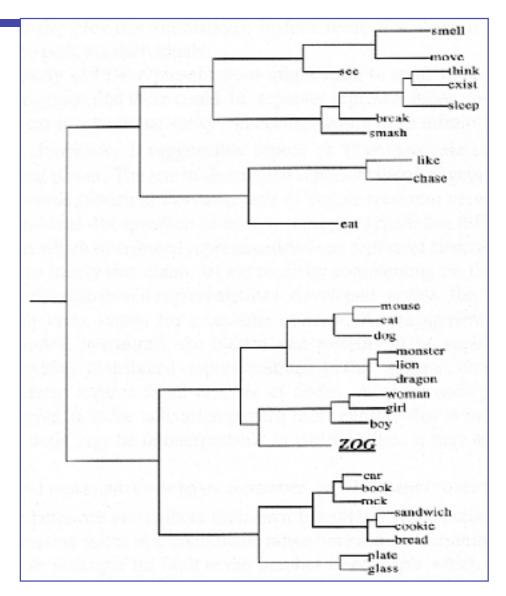


General Remarks

- Representations near one another form classes
- Higher level categories correspond to larger, more general regions
 - Categories are hierarchical
- The hierarchical categorisation is "soft"
 - □ Some categories are categorially distinct
 - Others share properties and have less distinct boundaries
 - □ Category membership can be marginal or unambiguous
- Cannot assign a given input to multiple positions
 - □ I.e. cannot learn to distinguish multiple word "senses"
- Categories have no "content": they are not grounded in the real world
 While learners do have, e.g. correlated visual input
 - An important component of the word's meaning is its context
 - Hidden units reflect both the word and its prior context
 - □ Words take much of their meaning from the context they appear in
 - □ We should therefore be able to assign meaning to unknown words ...

Unknown words

- If we replace "man" with a novel word "zog"
 - "Zog" is represented by a new input vector
 - We can now present the new testing corpus to the frozen network
 - Re-perform the hierarchical cluster analysis ...
- "Zog" bears the same relationship to other words as "man" did in the original training set
 - The new word's internal rep'n is based on its behaviour



General discussion

The network learns hierarchical categories and classes

- □ Such classes are determined from word order/co-occurrence
- □ Learning takes place purely on the basis of observable data
 - + No pre-specified localist representations, etc.

Predicts "context" effects in processing:

- Consistent with findings that human lexical access is sensitive to context
 - Controversial: there is evidence both for (Tabossi) and against (Swinney) immediate context effects in lexical access
- □ And that it is word classes that are predicted, not individual words