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Overview
 Reading Aloud:  Mapping Orthography to Phonology

 Sejnowski & Rosenberg:  NETtalk
 Seidenberg & McClelland, Plaut et al models of adult performance

 Good performance on known and unknown words
 Models (normal) human behaviour
 Fails to replicate the double-dissociation (in acquired dyslexics)
 Importance of input and output representations

 Language Acquisition:  how do children acquire language?

 English past-tense:  Morphology
 Forming the past tense from the present
 Similarity:  dual-route models to explain a double dissociation
 Connectionist account:  a single mechanism

 Learning vocabulary:  Lexical development
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Reading Aloud

 Task:  produce correct pronunciation for a word, given its printed form

 Suited to connectionist modelling:
 Need to learn mappings from one domain (print) to another (sound)
 Multi-layer networks are good at this, even when mappings are somewhat

arbitrary
 Human learning is similar to network learning:

 Learning takes place gradually over time
 Incorrect attempts are often corrected

 If a network can’t model this linguistic task successfully, it would be a
serious blow to connectionist modelling.  But …
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Dual Route Model

 The standard model of reading
posits two independent routes
leading to pronunciation of
a word, because …
 People can easily pronounce

words they have never seen:
 SLINT or MAVE

 People can pronounce words
which break the “rules”:
 PINT or HAVE

 One mechanism uses general
rules for pronunciation

 The other mechanism stores
pronunciation information with
specific words
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Behaviour of Dual-Route Models

 Consider:  MINT, PINT, and KINT

 MINT is a regular word:
 Can be pronounced using the “rule-based” mechanism
 But also exists in the lexicon, so can be pronounced by the “lexical” route

 PINT is a word, but irregular
 Can only be correctly pronounced by the lexical route
 Otherwise, it would rhyme with MINT

 KINT is not a word:
 No entry in the lexicon
 Can only be pronounced using the “rule-based” mechanism
 So it should rhyme with MINT
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Evidence for the Dual-Route Model

 Evidence from neuropsychology shows different patterns of behaviour
for two types of brain damage (acquired after learning):

 Phonological dyslexia
 Symptom:  Read regular words without difficulty, but cannot produce

pronunciations for non-words
 Explanation:  Damage to rule-based route; lexical route intact

 Surface dyslexia
 Symptom:  Can pronounce regular words and non-words correctly, but

make errors on irregulars (tendency to regularise)
 Explanation:  Damage to the lexical route; rule-based route intact

 All Dual-Route models share:
 A lexicon for known words, with specific pronunciation information
 A rule mechanism for the pronunciation of unknown words
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Towards a Connectionist Model

 It is unclear how a connectionist model could naturally implement a
dual-route model:
 No obvious way to implement a lexicon to store information about

particular words; storage is typically distributed
 No clear way to distinguish “specific information” from “general rules”; only

one uniform way to store information:  connection weights

 Examine the behaviour of standard 2-layer feedforward models
 NETTalk:  Sejnowski & Rosenberg (1987)
 Seidenberg & McClelland (1989)

 Trained to pronounce all the monosyllabic words of English
 Learning is implemented using the backpropagation algorithm
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80 hidden units

teacher
/k/

target output

26 output units

NETTalk (Sejnowski & Rosenberg, 1987)

7 groups of
29 input units

(after Hinton, 1989) target letter

_ a _ c a t _ 7 letters of
text input

18,629 weights
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NETTalk Performance, Learning and Behavior

 Performance
 90% success rate during training.
 80%-87% when tested on a set of novel inputs

 Learning
 Initially (with random weights) NETTalk babbled incoherently
 Target phoneme was produced more often as weights were altered
  Generalisation of learned pronunciations (e.g., the “a” sound in cat)

 Often useful (e.g., the “a” sound in hat)
 Exceptions (e.g., the “a” sound in hate)

 Learned to use letter’s context

friends
sent
around
not
let

soon
doubt
keep
attention
loss
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Each hidden neuron in the net
is used to detect a different
feature of the input.
These features were then used
to divide up the input space into
useful regions.
By detecting which regions an
input falls within, the net can tell
whether  it should return 1 or
return 0.

NETTalk’s Hidden Unit Subspaces

NETtalk uses the same trick.
It uses the hidden units to
detect 79 different features…
In other words, its weights
divide its input space into 79
regions
There are 79 regions because
there are 79 English letter-to-
phoneme relationships.
Examining the weights allows
us to cluster these
features/regions, grouping
similar ones together…
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Seidenberg and McClelland (1989)

 2-layer feed-forward model:
 Distributed representations at input

and output
 Distributed knowledge within the net
 Gradient descent learning

 Input and Output
 Inputs are activated by the letters of the words

 20% activated, on average
 Outputs represent the phonological features

 12% activated, on average
 Encoding of features does not affect the success

 Processing:

 Activation of a node is calculated using the logistic function

460 phonological units

200 hidden units

400 orthographic units

! 

netinput i = a jwijj
" + biasi
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Training the Model

 Learning
 Weights and bias are initially random
 Words are presented and outputs are computed
 Connection weights are adjusted based on backpropagation of error

 Training
 All monosyllabic words of 3 or more letters (about 3000) words
 In each epoch, a subset was presented

 Frequent words appeared more often
 Over 250 epochs, (THE) was presented 230 times, least common 7 times

 (THE) is actually 100000 times more likely, but this doesn’t change learning

 Performance
 Outputs were considered correct if the pattern was closer to the correct

pronounciation than that of any other word
 After 250 epochs, accuracy was 97%
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Results:  Seidenberg & McClelland

 The model does successfully learn to map most regular and irregular
word forms to their correct pronunciation
 It does this without separate routes for lexical or rule based processing
 There is no word specific memory

 It does not perform as well as humans in pronouncing non-words
 Naming Latency:

 Experiments have shown that adult reaction times for naming a word is a
function of variables such as word frequency and spelling regularity

 The current model cannot directly mimic latencies, since the
computation of outputs is constant

 The model can be seen as simulating this observation if we relate the
output error score to latency
 Phonological error score is the difference between the actual pattern and

the correct pattern
 Hypothesis:  high error should correlate with longer latencies
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Word Frequency Effects
 Common words are pronounced more quickly than uncommon words

 This is true for almost all aspects of human information processing

 Conventional (localist) explanation:
 Frequent words require a lower threshold of activity for “the word

recognition device” to “fire”
 Infrequent words require a higher threshold of activity

 In the Seidenberg & McClelland model, naming latency is modelled by
the error:
 Word frequency is reflected in the training procedure
 Phonological error is reduced by training, and therefore lower for high

frequency words

 The explanation of latencies in terms of error follows directly from the
network’s architecture and the training regime
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Frequency x Regularity
 In addition to faster naming of frequent words, human subjects exhibit:

 Faster pronunciation of regular words (e.g GAVE or MUST) than irregular
words (e.g. HAVE or PINT)

 But this effect interacts with frequency:  it is only observed with low
frequency words

 For regulars (filled circle) we observe a small effect of frequency
 It takes slightly longer to pronounce the low frequency regulars

 For irregulars (open square) we observe a large effect of frequency
 The model precisely

mimics this pattern of
behavior in the error

 2-route:  the confusion of
the lexical and rule outcome
requires resolution
 Lexical route wins faster

for high frequency words
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Frequency x Neighborhood Size

 The “neighborhood size” of a word is defined as the number of words
that differ by changing one letter (in orthographic representation)

 Neighborhood size has been shown to also affect naming latency in
much the same way as with regularity:
 Not much influence for high frequency words
 Low frequency words with small neighborhoods (filled circles) are read

much more slowly than words with large neighborhoods (open squares)
 Shows “cooperation” of the information learnt in response to different

(but similar) inputs
 Again, the connectionist

model directly predicts this
 The 2 route model requires

a more ad hoc explanation,
grouping across localist
representations of the lexicon
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Spelling-to-Sound Consistency

 Consistent spelling patterns:  _UST
 All words have the same pronunciation

 Inconsistent patterns are those with more than one:  _AVE

 Observation:  adult readers produce pronunciations more quickly for
non-words derived from consistent patterns (NUST) than from
inconsistent patterns (MAVE)

 This is difficult for 2-route models:
 Since both are processed by the

rule-based route
 Consistent and inconsistent rules

would need to be distinguished
 The error in the connectionist model

predicts this latency effect perfectly
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Summary of Seidenberg & McClelland (1989)

 What has the model achieved?
 The model is a single mechanism with no lexical entries or explicit rules
 Response to an input is a function of the network’s entire experience

 Reflects previous experience on a particular word
 Experience with words resembling that string

 E.g. specific experience with HAVE is sufficient to overcome the
general information that _AVE is usually a long vowel

 The network can produce a plausible pronunciation for MAVE, but error
is introduced by experience with inconsistent words like HAVE

 Performance
 97% accuracy on pronouncing learned words
 Models:  frequency & interaction with regularity, neighborhood, consistency

 Limitations:  It is not as good as humans at
 Reading non-words (model gets 60%, humans 90%)
 Lexical decision (FRAME is a word, but FRANE is not)
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Representations are important
 Position specific:  for inputting words of maximum length N:

 N groups of 26 binary inputs = word
 But consider:  LOG, GLAD, SPLIT, GRILL, CRAWL

 The model needs to learn the correspondence between L and /l/
 But L always appears in different positions
 Learning different pronunciations for different positions should be

straightforward
 Alignment:  letters and phonemes are not in 1-to-1 correspondence

 Problem: non-position-specific loses important order information:
 RAT = ART = TAR

 Solution:  S&M decompose word and phoneme strings into “triples”
 FISH = _FI  SH_  ISH  FIS
 Each input unit is associated with 1000 random triples
 Active if that triple appears in the input word

 S&M still suffer some specific effects
 Information learned about a letter in one context is not easily generalised

Wickelfeatures
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Improving the Model:  Plaut et al (1996)
 Plaut et al (1996) solution:  non-position-specific + linguistic constraints

 Monosyllabic word = onset + vowel + coda
  Strong constraints on order within these clusters

 E.g, if ‘t’ and ‘s’ are together, ‘s’ always precedes ‘t’
 Only one set of grapheme-to-phoneme units is required for the letters in each group
 Correspondences can be pooled across different words, even when letters appear in

different positions
 Input representations:

 Onset: first letter or consonant cluster (30)
 y s p t k q c b d g f v j z l m n r w h ch gh gn ph ps rh sh th ts wh

 Vowel (27)
 e I o u a y ai au aw ay ea ee ei eu ew ey ie oa oe oi oo ou ow oy ue ui uy

 Coda: final letter or consonant cluster (48)
  h r l m n b d g cxf v j s z p t k q bb ch ck dd dg ff gg gh gn ks ll ng nn ph pp ps rr sh sl ss

tch th ts tt zz u e es ed

 Monosyllabic words are spelt by choosing one or more candidates from each
of the 3 possible groups:
 THROW:  (‘th’ + ‘r’), (‘o’), (‘w’)
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Output representations

 Phonology: groups of mutually exclusive members

 Onset (23)
 s S C
 z Z j f v T D p b t d k g m n h
 l r w y

 Vowel (14)
 a e i o u @ ^ A E I O U W Y

 Coda (24)
 r s z
 l f v p k
 m n N t
 b g d S Z T D C j
 ps ks ts

 “Scratch”  =  ‘s k r a _ _ _ _ _ _ _ _ C’
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The network architecture

 The architecture of the Plaut et al network:
 The are a total 105 possible orthographic

onsets, vowels, and codas
 The are 61 possible phonological

onsets, vowels and codas
 Performance of the Plaut et al model:

 Succeeds in learning both regular and exception words
 Produces the frequency x regularity interaction
 Demonstrates the influences of frequency and neighbourhood size

 What is the performance on non-words?
 For consistent words (HEAN/DEAN): model (98%) versus human (94%)
 For inconsistent words (HEAF/DEAF/LEAF): model (72%), human (78%)

 This reflects production of regular forms: both human & model produced both

 Highlights the importance of encoding … how much knowledge is
implicit in the coding scheme

61 phoneme units

100 hidden units

105 grapheme units
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Summary

 Word frequencies:
 Seidenberg & McClelland presented training materials according to the log

frequencies of words
 People must deal with absolute frequencies which might lead the model to

see low frequency items too rarely
 Plaut et al model, however, succeeds with absolute frequencies

 Representations:
 The right encoding scheme is essential for modelling the findings

 How much linguistic knowledge is “given” to the network by Plaut’s encoding?
 They assume this knowledge could be partially acquired prior to reading

 I.e. children learn to pronounce “talk” before they can read it
 Doesn’t scale to polysyllabic words

 Does not explain the double dissociation:
 Surface dyslexics (can read exceptions, but not non-words)
 Phonological (can pronounce non-words, but not irregulars)
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Connectionist models of Acquisition

 Symbolic models emphasise the learning of rules and exceptions
 Connectionist models have no direct correlate to such mechanisms

 Knowledge is stored in a distributed weight matrix
 Models of learning:

 Start state of the cognitive system
 Learning mechanism
 Training environment
 Acquired skill

 Connectionist models provide an opportunity to model the learning
process itself, not just the resulting acquired skill
 We can test connectionist models against developmental data, at various

points during learning
 Discontinuities in performance (sudden changes in behaviour) can be

explained by “emergent properties” of a single, continuous mechanism



© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 25

Learning the Past Tense

 The problem of past tense formation:
 Regular formation:  stem + ‘ed’
 Irregulars do show some patterns:

 No-change: hit » hit          (all end in a ‘t’ or ‘d’)
 Vowel-change: ring » rang,  sing » sang     (rhymes often share vowel-change)
 Arbitrary: go » went

 Young children often form the past tense of irregular verbs (like GO) by
adding ED: overregularisations
 “go”+”ed” » “goed”

 This suggests incorrect application of a learned rule, not just rote
learning or imitation

 Overregularisations often occur after the child has already succeeded
in producing the correct irregular form:  “went”

 Thus we need to explain this “U-shaped” learning curve
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A Symbolic Account:  Dual-Route Model

 General pattern of behaviour:
 Early:  children learn past tenses by rote (forms are stored in memory)
 Later:  recognise regularities, add general device to add ‘ed’ suffix
 Now:  no need to memorise forms, but this leads to incorrect generalisation

of the regular rule to irregulars
 Finally:  distinguish which forms can be generated by the rule, and which

must be stored (and accessed) as exceptions
 A Dual Route Model:

 Errors result from the transition from rote
learning to rule-governed

 Recovery occurs after sufficient
exposure to irregulars:
 Increased “strength”
 Frequency based
 Faster recovery for frequent

irregulars

List of exceptions
(Associative memory)

Regular route
(Rule based)

Input stem

Output past tense

Blocking



© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 27

The Dual-Route Model

 As with reading aloud, this proposal
requires two qualitatively different
types of mechanism

 Accounts for the observed
dissociation:
 Children make mistakes on irregulars only

 Evidence for double dissociation (Pinker 1994)
 In some language disorders, children preserve performance on irregulars

but not regulars
 In other disorders, the opposite pattern is observed

 Accounts for the U-shaped learning curve
 And since irregulars differ in “representational strength” it explains why

overregularisation of high frequency irregulars is uncommon
 No explicit account of how the “+ed” rule is learned

List of exceptions
(Associative memory)

Regular route
(Rule based)

Input stem

Output past tense

Blocking
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Language Acquisition

 Perhaps the notion of inflection is innately specified, and need not itself
be learned:
 The inflectional mechanism is triggered by the environment or maturation
 Then the exact (language specific) manifestation must be learned

 Criticisms:
 Early learning tends to be focussed on irregular verbs
 Irregular sub-classes (hit, sing, ring) might lead to incorrect rule learning

 These do occur, but typically late in learning
 How are good/spurious rules distinguished and selected

 English is unusual in possessing a large class of regular verbs
 Only 180 irregulars

 Only 20% of plurals in Arabic are regular
 Norwegian has 2 regular forms for verbs:  3-route model ?
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Towards a Connectionist Model

 No distinct mechanisms for regular and irregular forms
 No innately specified maturation stage or rules to be triggered

 Parsimonious:
 Simplifies the structural complexity of the starting state
 Learning exploits the structure of the learning environment

 Rummelhart and McClelland (1986)
 First attempt to model this problem (or any development system)
 Modelled U-shaped learning, but heavily criticised (Pinker & Prince 1988)

 Plunkett & Marchman
 Use a feed-forward network, one hidden layer
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Rummelhart and McClelland (1986)

 A single-layer feed-forward network (perceptron)
 Input:  a phonological representation of the stem (wickelfeatures)
 Output:  a phonological representation of the past tense (wickelfeatures)
 Trained using the perceptron learning rule

 Training:
 First trained on 10 high frequency

verbs (8 irregular, 2 regular), 10 epochs
 Perfect performance
 Then 420 (medium frequency) verbs

(80% regular), 190 epochs
 Early in training, shows tendency to

overregularise, i.e. modelling stage 2
 End of training, exhibits “adult” (near

perfect) performance
 Generalised reasonably well to 86 low frequency verbs in test set
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Performance of R&M (1986)

 Criticisms:
 Problems with representation using wickelphones/wickelfeatures
 U-shape performance depends on sudden changes from 10-420 in the

training regime
 Rote learning of first 10 verbs:  there was no generalisation to novel stems

after 10 epochs
 Most of the 410 new verbs are regular, overwhelming the network and

leading to overregularisation
 Justification:  children do exhibit vocabulary spurt at end of year 2

 But overregularisation errors typically occur at end of year 3
 Vocabulary spurt is mostly due to nouns

 Single-layer Perceptron only works for linearly separable problems
 Plunkett & Marchman (1991) show residual error remains after extensive

training
 Suggests a hidden-layer network
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Plunkett and Marchman (1993)

 A standard feedforward network with
one hidden layer

 Maps a phonological representation of
the stem to a phonological representation
of the past tense

 Initially, the model is trained to learn the
past tense of 10 regular and 10 irregular verbs
 Represents current estimates of children’s early vocabulary

 Training proceeds using the standard backprop algorithm, in response
to error between actual and desired output
 Is this plausible?

 Learning must configure the network for both regulars and irregulars
 Consider:  hit » hit, but pit » pitted
 We know multi-layer networks can do this, but considerable training may

be required

20 phonological units

30 hidden units

20 phonological units
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Plunkett and Marchman (continued)

 Training:
 Initial period of 10 regular and 10 irregular verbs
 Then vocabulary was gradually increased to mimic the gradual uptake of

words in children
 Total:  500 word stems, 90% regular (similar to the relative frequency of

regulars in English)
 Higher frequency verbs were introduced earlier in training, and so were

also presented to the network more often
 Irregulars are more frequent, so appear more often in training
 This is essential, otherwise the regulars swamp the network
 Arguably more accurately reflects the child’s learning environment

 The final model successfully learned the 500 verbs in the training set
 But errors were made during the learning phase
 Caused by interference between mappings for regulars and irregulars

before mature connection weights have been discovered
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Performance of P&M
 Early acquisition is characterised by a period of error free performance
 Low overall rate (5-10%) of overregularisation errors
 Overregularisation is not restricted to a particular period of development
 Common irregulars do not exhibit overregularisation (e.g. ‘goed’ is rare)
 Errors are phonologically conditioned:  No change verbs (hit) are robust to

overregularisation (e.g ‘hitted’ is rare)
 Only a very small number of irregularisation errors are observed (e.g. where

the network produces ‘bat’ for ‘bite’)

 Generally compatible with the
results of studies by
Marcus et al (1992):
 Early performance is error

free, and then low error is
more or less random
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Discussion
 Performance is closely tied to the training environment:

 Onset of overregularisation is closely bound to a “critical mass” of regular
verbs entering the child vocabulary

 This subsides as the training learns the final solution for the task
 Highly sensitive to training environment:

 Requires more training on arbitrary irregulars (go/went), which are highly
frequent in the language

 More robust for no-change verbs (hit, put) which are more numerous (type)
and less frequent (token)

 Models the frequency x regularity interaction:
 Faster reaction time for high frequency irregulars than low frequency ones
 No advantage for regulars

 Differential behaviour for regulars and irregulars result from lesioning
 Suggests it is dangerous to infer dissociations in mechanisms due to

observed dissociations in behaviour
 Critical mass effect can have the appearance of a distinct mechanism



© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 36

Criticism
 We know multi-layered networks can learn such mappings in general;

not proof that children use the same type of mechanism

 Pinker & Prasada argue that the (idiosyncratic) statistical properties of
English help the model:
 Regulars have low token frequency but high type frequency: facilitates the

generalisation across this class of items
 Irregulars have low type frequency but high token frequency: facilitates rote

learning mechanism for these words

 They argue no connectionist model can accommodate default
generalisation for a class which has both low type and token frequency
 Default inflection of plural nouns in German appear to have this property

(Clahsen, Monographs of the Society for Research in Child Development,
57, 1992)

 No explanation of the double-dissociation observed by Pinker (1994)
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Double Dissociations and Input Gain
(Kello, Sibley, & Plaut, 2005)
 Motivated by a study that used representations that mediate both

semantics and phonology, in which orthography was processed into
the junction between semantics and phonology.

 Basic characteristics of surface and phonological dyslexia were
manipulated by the input-gain parameter that modulated sensitivity of a
unit’s activation to its net input.

 To isolate the source of the dissociative effects observed in the model,
simple connectionist models were build to compute simple quasi-
regular mappings based on linguistic phenomena.

 Both localist and distributed models were investigated.
 In the localist models, input modulated competition among units
 In the distributed models, input-output pairings activated multiple units in a

hidden layer that mediated quasi-regular mappings.
 Four pairs of simulations explored both basic effect of input gain on

localist and distributed models types, as well as model two basic
aspects of quasi-regularity.
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Results

 We will focus on the fourth experiment, built up on the other three
 Sub-regularities of quasi-regular domains

 One large-scale regularity (the identity mapping)
 Two small-scale subregularities (flipping and shifting four target values)

 Flip: CHAT-CHATTED, DOT-DOTTED vs HIT, FIT, QUIT, LET, BET, SET
 Shift:  BAT-BATTED (/æ/) vs BATE-BATED (/ε/)

 Method:  1024 known items, 3072 novel (12 dimensions)
 Target items were first copied and exceptions applied for flip, shift, and

random irregularities.
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Main conclusions
 Dissociations in performance do not necessarily entail distinct

mechanisms:
 Reading aloud:  a single mechanism explains regular and irregular

pronunciation of monosyllabic rules
 Past tense:  a single model of regular and irregular past tense formation

 But, explaining double dissociations is difficult
 Has been shown to be possible on small networks, but unclear if larger

(more plausible) networks can demonstrate double dissociations
 Connectionist models excel at finding structure and patterns in the

environment:  “statistical inference machines”
 The start state for learning may be relatively simple, unspecified
 Necessary constraints to aid learning come from the environment

 Can such models scale up?  Are they successful for languages with
different distributional properties?


