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Overview
 Reading Aloud:  Mapping Orthography to Phonology

 Sejnowski & Rosenberg:  NETtalk
 Seidenberg & McClelland, Plaut et al models of adult performance

 Good performance on known and unknown words
 Models (normal) human behaviour
 Fails to replicate the double-dissociation (in acquired dyslexics)
 Importance of input and output representations

 Language Acquisition:  how do children acquire language?

 English past-tense:  Morphology
 Forming the past tense from the present
 Similarity:  dual-route models to explain a double dissociation
 Connectionist account:  a single mechanism

 Learning vocabulary:  Lexical development
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Reading Aloud

 Task:  produce correct pronunciation for a word, given its printed form

 Suited to connectionist modelling:
 Need to learn mappings from one domain (print) to another (sound)
 Multi-layer networks are good at this, even when mappings are somewhat

arbitrary
 Human learning is similar to network learning:

 Learning takes place gradually over time
 Incorrect attempts are often corrected

 If a network can’t model this linguistic task successfully, it would be a
serious blow to connectionist modelling.  But …



© Matthew W. Crocker Computational Psycholinguistics - Winter 2008 4

Dual Route Model

 The standard model of reading
posits two independent routes
leading to pronunciation of
a word, because …
 People can easily pronounce

words they have never seen:
 SLINT or MAVE

 People can pronounce words
which break the “rules”:
 PINT or HAVE

 One mechanism uses general
rules for pronunciation

 The other mechanism stores
pronunciation information with
specific words
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Behaviour of Dual-Route Models

 Consider:  MINT, PINT, and KINT

 MINT is a regular word:
 Can be pronounced using the “rule-based” mechanism
 But also exists in the lexicon, so can be pronounced by the “lexical” route

 PINT is a word, but irregular
 Can only be correctly pronounced by the lexical route
 Otherwise, it would rhyme with MINT

 KINT is not a word:
 No entry in the lexicon
 Can only be pronounced using the “rule-based” mechanism
 So it should rhyme with MINT
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Evidence for the Dual-Route Model

 Evidence from neuropsychology shows different patterns of behaviour
for two types of brain damage (acquired after learning):

 Phonological dyslexia
 Symptom:  Read regular words without difficulty, but cannot produce

pronunciations for non-words
 Explanation:  Damage to rule-based route; lexical route intact

 Surface dyslexia
 Symptom:  Can pronounce regular words and non-words correctly, but

make errors on irregulars (tendency to regularise)
 Explanation:  Damage to the lexical route; rule-based route intact

 All Dual-Route models share:
 A lexicon for known words, with specific pronunciation information
 A rule mechanism for the pronunciation of unknown words
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Towards a Connectionist Model

 It is unclear how a connectionist model could naturally implement a
dual-route model:
 No obvious way to implement a lexicon to store information about

particular words; storage is typically distributed
 No clear way to distinguish “specific information” from “general rules”; only

one uniform way to store information:  connection weights

 Examine the behaviour of standard 2-layer feedforward models
 NETTalk:  Sejnowski & Rosenberg (1987)
 Seidenberg & McClelland (1989)

 Trained to pronounce all the monosyllabic words of English
 Learning is implemented using the backpropagation algorithm
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80 hidden units

teacher
/k/

target output

26 output units

NETTalk (Sejnowski & Rosenberg, 1987)

7 groups of
29 input units

(after Hinton, 1989) target letter

_ a _ c a t _ 7 letters of
text input

18,629 weights
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NETTalk Performance, Learning and Behavior

 Performance
 90% success rate during training.
 80%-87% when tested on a set of novel inputs

 Learning
 Initially (with random weights) NETTalk babbled incoherently
 Target phoneme was produced more often as weights were altered
  Generalisation of learned pronunciations (e.g., the “a” sound in cat)

 Often useful (e.g., the “a” sound in hat)
 Exceptions (e.g., the “a” sound in hate)

 Learned to use letter’s context

friends
sent
around
not
let

soon
doubt
keep
attention
loss
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Each hidden neuron in the net
is used to detect a different
feature of the input.
These features were then used
to divide up the input space into
useful regions.
By detecting which regions an
input falls within, the net can tell
whether  it should return 1 or
return 0.

NETTalk’s Hidden Unit Subspaces

NETtalk uses the same trick.
It uses the hidden units to
detect 79 different features…
In other words, its weights
divide its input space into 79
regions
There are 79 regions because
there are 79 English letter-to-
phoneme relationships.
Examining the weights allows
us to cluster these
features/regions, grouping
similar ones together…
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Seidenberg and McClelland (1989)

 2-layer feed-forward model:
 Distributed representations at input

and output
 Distributed knowledge within the net
 Gradient descent learning

 Input and Output
 Inputs are activated by the letters of the words

 20% activated, on average
 Outputs represent the phonological features

 12% activated, on average
 Encoding of features does not affect the success

 Processing:

 Activation of a node is calculated using the logistic function

460 phonological units

200 hidden units

400 orthographic units

! 

netinput i = a jwijj
" + biasi
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Training the Model

 Learning
 Weights and bias are initially random
 Words are presented and outputs are computed
 Connection weights are adjusted based on backpropagation of error

 Training
 All monosyllabic words of 3 or more letters (about 3000) words
 In each epoch, a subset was presented

 Frequent words appeared more often
 Over 250 epochs, (THE) was presented 230 times, least common 7 times

 (THE) is actually 100000 times more likely, but this doesn’t change learning

 Performance
 Outputs were considered correct if the pattern was closer to the correct

pronounciation than that of any other word
 After 250 epochs, accuracy was 97%
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Results:  Seidenberg & McClelland

 The model does successfully learn to map most regular and irregular
word forms to their correct pronunciation
 It does this without separate routes for lexical or rule based processing
 There is no word specific memory

 It does not perform as well as humans in pronouncing non-words
 Naming Latency:

 Experiments have shown that adult reaction times for naming a word is a
function of variables such as word frequency and spelling regularity

 The current model cannot directly mimic latencies, since the
computation of outputs is constant

 The model can be seen as simulating this observation if we relate the
output error score to latency
 Phonological error score is the difference between the actual pattern and

the correct pattern
 Hypothesis:  high error should correlate with longer latencies
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Word Frequency Effects
 Common words are pronounced more quickly than uncommon words

 This is true for almost all aspects of human information processing

 Conventional (localist) explanation:
 Frequent words require a lower threshold of activity for “the word

recognition device” to “fire”
 Infrequent words require a higher threshold of activity

 In the Seidenberg & McClelland model, naming latency is modelled by
the error:
 Word frequency is reflected in the training procedure
 Phonological error is reduced by training, and therefore lower for high

frequency words

 The explanation of latencies in terms of error follows directly from the
network’s architecture and the training regime
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Frequency x Regularity
 In addition to faster naming of frequent words, human subjects exhibit:

 Faster pronunciation of regular words (e.g GAVE or MUST) than irregular
words (e.g. HAVE or PINT)

 But this effect interacts with frequency:  it is only observed with low
frequency words

 For regulars (filled circle) we observe a small effect of frequency
 It takes slightly longer to pronounce the low frequency regulars

 For irregulars (open square) we observe a large effect of frequency
 The model precisely

mimics this pattern of
behavior in the error

 2-route:  the confusion of
the lexical and rule outcome
requires resolution
 Lexical route wins faster

for high frequency words
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Frequency x Neighborhood Size

 The “neighborhood size” of a word is defined as the number of words
that differ by changing one letter (in orthographic representation)

 Neighborhood size has been shown to also affect naming latency in
much the same way as with regularity:
 Not much influence for high frequency words
 Low frequency words with small neighborhoods (filled circles) are read

much more slowly than words with large neighborhoods (open squares)
 Shows “cooperation” of the information learnt in response to different

(but similar) inputs
 Again, the connectionist

model directly predicts this
 The 2 route model requires

a more ad hoc explanation,
grouping across localist
representations of the lexicon
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Spelling-to-Sound Consistency

 Consistent spelling patterns:  _UST
 All words have the same pronunciation

 Inconsistent patterns are those with more than one:  _AVE

 Observation:  adult readers produce pronunciations more quickly for
non-words derived from consistent patterns (NUST) than from
inconsistent patterns (MAVE)

 This is difficult for 2-route models:
 Since both are processed by the

rule-based route
 Consistent and inconsistent rules

would need to be distinguished
 The error in the connectionist model

predicts this latency effect perfectly
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Summary of Seidenberg & McClelland (1989)

 What has the model achieved?
 The model is a single mechanism with no lexical entries or explicit rules
 Response to an input is a function of the network’s entire experience

 Reflects previous experience on a particular word
 Experience with words resembling that string

 E.g. specific experience with HAVE is sufficient to overcome the
general information that _AVE is usually a long vowel

 The network can produce a plausible pronunciation for MAVE, but error
is introduced by experience with inconsistent words like HAVE

 Performance
 97% accuracy on pronouncing learned words
 Models:  frequency & interaction with regularity, neighborhood, consistency

 Limitations:  It is not as good as humans at
 Reading non-words (model gets 60%, humans 90%)
 Lexical decision (FRAME is a word, but FRANE is not)
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Representations are important
 Position specific:  for inputting words of maximum length N:

 N groups of 26 binary inputs = word
 But consider:  LOG, GLAD, SPLIT, GRILL, CRAWL

 The model needs to learn the correspondence between L and /l/
 But L always appears in different positions
 Learning different pronunciations for different positions should be

straightforward
 Alignment:  letters and phonemes are not in 1-to-1 correspondence

 Problem: non-position-specific loses important order information:
 RAT = ART = TAR

 Solution:  S&M decompose word and phoneme strings into “triples”
 FISH = _FI  SH_  ISH  FIS
 Each input unit is associated with 1000 random triples
 Active if that triple appears in the input word

 S&M still suffer some specific effects
 Information learned about a letter in one context is not easily generalised

Wickelfeatures
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Improving the Model:  Plaut et al (1996)
 Plaut et al (1996) solution:  non-position-specific + linguistic constraints

 Monosyllabic word = onset + vowel + coda
  Strong constraints on order within these clusters

 E.g, if ‘t’ and ‘s’ are together, ‘s’ always precedes ‘t’
 Only one set of grapheme-to-phoneme units is required for the letters in each group
 Correspondences can be pooled across different words, even when letters appear in

different positions
 Input representations:

 Onset: first letter or consonant cluster (30)
 y s p t k q c b d g f v j z l m n r w h ch gh gn ph ps rh sh th ts wh

 Vowel (27)
 e I o u a y ai au aw ay ea ee ei eu ew ey ie oa oe oi oo ou ow oy ue ui uy

 Coda: final letter or consonant cluster (48)
  h r l m n b d g cxf v j s z p t k q bb ch ck dd dg ff gg gh gn ks ll ng nn ph pp ps rr sh sl ss

tch th ts tt zz u e es ed

 Monosyllabic words are spelt by choosing one or more candidates from each
of the 3 possible groups:
 THROW:  (‘th’ + ‘r’), (‘o’), (‘w’)
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Output representations

 Phonology: groups of mutually exclusive members

 Onset (23)
 s S C
 z Z j f v T D p b t d k g m n h
 l r w y

 Vowel (14)
 a e i o u @ ^ A E I O U W Y

 Coda (24)
 r s z
 l f v p k
 m n N t
 b g d S Z T D C j
 ps ks ts

 “Scratch”  =  ‘s k r a _ _ _ _ _ _ _ _ C’
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The network architecture

 The architecture of the Plaut et al network:
 The are a total 105 possible orthographic

onsets, vowels, and codas
 The are 61 possible phonological

onsets, vowels and codas
 Performance of the Plaut et al model:

 Succeeds in learning both regular and exception words
 Produces the frequency x regularity interaction
 Demonstrates the influences of frequency and neighbourhood size

 What is the performance on non-words?
 For consistent words (HEAN/DEAN): model (98%) versus human (94%)
 For inconsistent words (HEAF/DEAF/LEAF): model (72%), human (78%)

 This reflects production of regular forms: both human & model produced both

 Highlights the importance of encoding … how much knowledge is
implicit in the coding scheme

61 phoneme units

100 hidden units

105 grapheme units
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Summary

 Word frequencies:
 Seidenberg & McClelland presented training materials according to the log

frequencies of words
 People must deal with absolute frequencies which might lead the model to

see low frequency items too rarely
 Plaut et al model, however, succeeds with absolute frequencies

 Representations:
 The right encoding scheme is essential for modelling the findings

 How much linguistic knowledge is “given” to the network by Plaut’s encoding?
 They assume this knowledge could be partially acquired prior to reading

 I.e. children learn to pronounce “talk” before they can read it
 Doesn’t scale to polysyllabic words

 Does not explain the double dissociation:
 Surface dyslexics (can read exceptions, but not non-words)
 Phonological (can pronounce non-words, but not irregulars)
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Connectionist models of Acquisition

 Symbolic models emphasise the learning of rules and exceptions
 Connectionist models have no direct correlate to such mechanisms

 Knowledge is stored in a distributed weight matrix
 Models of learning:

 Start state of the cognitive system
 Learning mechanism
 Training environment
 Acquired skill

 Connectionist models provide an opportunity to model the learning
process itself, not just the resulting acquired skill
 We can test connectionist models against developmental data, at various

points during learning
 Discontinuities in performance (sudden changes in behaviour) can be

explained by “emergent properties” of a single, continuous mechanism
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Learning the Past Tense

 The problem of past tense formation:
 Regular formation:  stem + ‘ed’
 Irregulars do show some patterns:

 No-change: hit » hit          (all end in a ‘t’ or ‘d’)
 Vowel-change: ring » rang,  sing » sang     (rhymes often share vowel-change)
 Arbitrary: go » went

 Young children often form the past tense of irregular verbs (like GO) by
adding ED: overregularisations
 “go”+”ed” » “goed”

 This suggests incorrect application of a learned rule, not just rote
learning or imitation

 Overregularisations often occur after the child has already succeeded
in producing the correct irregular form:  “went”

 Thus we need to explain this “U-shaped” learning curve
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A Symbolic Account:  Dual-Route Model

 General pattern of behaviour:
 Early:  children learn past tenses by rote (forms are stored in memory)
 Later:  recognise regularities, add general device to add ‘ed’ suffix
 Now:  no need to memorise forms, but this leads to incorrect generalisation

of the regular rule to irregulars
 Finally:  distinguish which forms can be generated by the rule, and which

must be stored (and accessed) as exceptions
 A Dual Route Model:

 Errors result from the transition from rote
learning to rule-governed

 Recovery occurs after sufficient
exposure to irregulars:
 Increased “strength”
 Frequency based
 Faster recovery for frequent

irregulars

List of exceptions
(Associative memory)

Regular route
(Rule based)

Input stem

Output past tense

Blocking
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The Dual-Route Model

 As with reading aloud, this proposal
requires two qualitatively different
types of mechanism

 Accounts for the observed
dissociation:
 Children make mistakes on irregulars only

 Evidence for double dissociation (Pinker 1994)
 In some language disorders, children preserve performance on irregulars

but not regulars
 In other disorders, the opposite pattern is observed

 Accounts for the U-shaped learning curve
 And since irregulars differ in “representational strength” it explains why

overregularisation of high frequency irregulars is uncommon
 No explicit account of how the “+ed” rule is learned

List of exceptions
(Associative memory)

Regular route
(Rule based)

Input stem

Output past tense

Blocking
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Language Acquisition

 Perhaps the notion of inflection is innately specified, and need not itself
be learned:
 The inflectional mechanism is triggered by the environment or maturation
 Then the exact (language specific) manifestation must be learned

 Criticisms:
 Early learning tends to be focussed on irregular verbs
 Irregular sub-classes (hit, sing, ring) might lead to incorrect rule learning

 These do occur, but typically late in learning
 How are good/spurious rules distinguished and selected

 English is unusual in possessing a large class of regular verbs
 Only 180 irregulars

 Only 20% of plurals in Arabic are regular
 Norwegian has 2 regular forms for verbs:  3-route model ?
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Towards a Connectionist Model

 No distinct mechanisms for regular and irregular forms
 No innately specified maturation stage or rules to be triggered

 Parsimonious:
 Simplifies the structural complexity of the starting state
 Learning exploits the structure of the learning environment

 Rummelhart and McClelland (1986)
 First attempt to model this problem (or any development system)
 Modelled U-shaped learning, but heavily criticised (Pinker & Prince 1988)

 Plunkett & Marchman
 Use a feed-forward network, one hidden layer
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Rummelhart and McClelland (1986)

 A single-layer feed-forward network (perceptron)
 Input:  a phonological representation of the stem (wickelfeatures)
 Output:  a phonological representation of the past tense (wickelfeatures)
 Trained using the perceptron learning rule

 Training:
 First trained on 10 high frequency

verbs (8 irregular, 2 regular), 10 epochs
 Perfect performance
 Then 420 (medium frequency) verbs

(80% regular), 190 epochs
 Early in training, shows tendency to

overregularise, i.e. modelling stage 2
 End of training, exhibits “adult” (near

perfect) performance
 Generalised reasonably well to 86 low frequency verbs in test set
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Performance of R&M (1986)

 Criticisms:
 Problems with representation using wickelphones/wickelfeatures
 U-shape performance depends on sudden changes from 10-420 in the

training regime
 Rote learning of first 10 verbs:  there was no generalisation to novel stems

after 10 epochs
 Most of the 410 new verbs are regular, overwhelming the network and

leading to overregularisation
 Justification:  children do exhibit vocabulary spurt at end of year 2

 But overregularisation errors typically occur at end of year 3
 Vocabulary spurt is mostly due to nouns

 Single-layer Perceptron only works for linearly separable problems
 Plunkett & Marchman (1991) show residual error remains after extensive

training
 Suggests a hidden-layer network
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Plunkett and Marchman (1993)

 A standard feedforward network with
one hidden layer

 Maps a phonological representation of
the stem to a phonological representation
of the past tense

 Initially, the model is trained to learn the
past tense of 10 regular and 10 irregular verbs
 Represents current estimates of children’s early vocabulary

 Training proceeds using the standard backprop algorithm, in response
to error between actual and desired output
 Is this plausible?

 Learning must configure the network for both regulars and irregulars
 Consider:  hit » hit, but pit » pitted
 We know multi-layer networks can do this, but considerable training may

be required

20 phonological units

30 hidden units

20 phonological units
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Plunkett and Marchman (continued)

 Training:
 Initial period of 10 regular and 10 irregular verbs
 Then vocabulary was gradually increased to mimic the gradual uptake of

words in children
 Total:  500 word stems, 90% regular (similar to the relative frequency of

regulars in English)
 Higher frequency verbs were introduced earlier in training, and so were

also presented to the network more often
 Irregulars are more frequent, so appear more often in training
 This is essential, otherwise the regulars swamp the network
 Arguably more accurately reflects the child’s learning environment

 The final model successfully learned the 500 verbs in the training set
 But errors were made during the learning phase
 Caused by interference between mappings for regulars and irregulars

before mature connection weights have been discovered
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Performance of P&M
 Early acquisition is characterised by a period of error free performance
 Low overall rate (5-10%) of overregularisation errors
 Overregularisation is not restricted to a particular period of development
 Common irregulars do not exhibit overregularisation (e.g. ‘goed’ is rare)
 Errors are phonologically conditioned:  No change verbs (hit) are robust to

overregularisation (e.g ‘hitted’ is rare)
 Only a very small number of irregularisation errors are observed (e.g. where

the network produces ‘bat’ for ‘bite’)

 Generally compatible with the
results of studies by
Marcus et al (1992):
 Early performance is error

free, and then low error is
more or less random
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Discussion
 Performance is closely tied to the training environment:

 Onset of overregularisation is closely bound to a “critical mass” of regular
verbs entering the child vocabulary

 This subsides as the training learns the final solution for the task
 Highly sensitive to training environment:

 Requires more training on arbitrary irregulars (go/went), which are highly
frequent in the language

 More robust for no-change verbs (hit, put) which are more numerous (type)
and less frequent (token)

 Models the frequency x regularity interaction:
 Faster reaction time for high frequency irregulars than low frequency ones
 No advantage for regulars

 Differential behaviour for regulars and irregulars result from lesioning
 Suggests it is dangerous to infer dissociations in mechanisms due to

observed dissociations in behaviour
 Critical mass effect can have the appearance of a distinct mechanism
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Criticism
 We know multi-layered networks can learn such mappings in general;

not proof that children use the same type of mechanism

 Pinker & Prasada argue that the (idiosyncratic) statistical properties of
English help the model:
 Regulars have low token frequency but high type frequency: facilitates the

generalisation across this class of items
 Irregulars have low type frequency but high token frequency: facilitates rote

learning mechanism for these words

 They argue no connectionist model can accommodate default
generalisation for a class which has both low type and token frequency
 Default inflection of plural nouns in German appear to have this property

(Clahsen, Monographs of the Society for Research in Child Development,
57, 1992)

 No explanation of the double-dissociation observed by Pinker (1994)
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Double Dissociations and Input Gain
(Kello, Sibley, & Plaut, 2005)
 Motivated by a study that used representations that mediate both

semantics and phonology, in which orthography was processed into
the junction between semantics and phonology.

 Basic characteristics of surface and phonological dyslexia were
manipulated by the input-gain parameter that modulated sensitivity of a
unit’s activation to its net input.

 To isolate the source of the dissociative effects observed in the model,
simple connectionist models were build to compute simple quasi-
regular mappings based on linguistic phenomena.

 Both localist and distributed models were investigated.
 In the localist models, input modulated competition among units
 In the distributed models, input-output pairings activated multiple units in a

hidden layer that mediated quasi-regular mappings.
 Four pairs of simulations explored both basic effect of input gain on

localist and distributed models types, as well as model two basic
aspects of quasi-regularity.
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Results

 We will focus on the fourth experiment, built up on the other three
 Sub-regularities of quasi-regular domains

 One large-scale regularity (the identity mapping)
 Two small-scale subregularities (flipping and shifting four target values)

 Flip: CHAT-CHATTED, DOT-DOTTED vs HIT, FIT, QUIT, LET, BET, SET
 Shift:  BAT-BATTED (/æ/) vs BATE-BATED (/ε/)

 Method:  1024 known items, 3072 novel (12 dimensions)
 Target items were first copied and exceptions applied for flip, shift, and

random irregularities.
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Main conclusions
 Dissociations in performance do not necessarily entail distinct

mechanisms:
 Reading aloud:  a single mechanism explains regular and irregular

pronunciation of monosyllabic rules
 Past tense:  a single model of regular and irregular past tense formation

 But, explaining double dissociations is difficult
 Has been shown to be possible on small networks, but unclear if larger

(more plausible) networks can demonstrate double dissociations
 Connectionist models excel at finding structure and patterns in the

environment:  “statistical inference machines”
 The start state for learning may be relatively simple, unspecified
 Necessary constraints to aid learning come from the environment

 Can such models scale up?  Are they successful for languages with
different distributional properties?


