

Λ1111	© Matthew W. Crocker 2
What is it?	
Using computational techniques to better understand a people produce and comprehend language	and model how
👶 Competence: How do utterances relate to underlying m	neaning?
Performance: How do people establish this relationship processing?	during on-line language
Computational psycholinguistics seeks cognitively plau about both mental rules and representations, and about	usible theories about ut cognitive processes
Computational psycholinguistics seeks to realize such implemented, predictive models of human knowledge	theories as and behaviour
ф	

3

 \oplus

111111

 \oplus

Areas of Psycholinguistics

- Speech perception and articulation
- The mental lexicon: how is it represented?
- Lexical access and lexical choice
- 👶 Sentence processing: syntactic, semantic, discourse, dialogue
- Situated language processing: interaction of language with task/context
- Embodied language processing:
 - intertwining of language with other cognitive and perceptual systems
 - Modeling of these accounts through cognitive robotics

 Image: Constraint of the processes that underlie the human capacity to understand and model the processes that underlie the human capacity to understand language;
 Image: Constraint of the brain capacity to understand language processor work?

 Image: Constraint of the brain capacity to constraint of the brain?
 Image: Constraint of the brain?

 Image: Constraint of the brain capacity to constraint of the brain?
 Image: Constraint of the brain?

 Image: Constraint of the brain capacity to constraint of the environment?
 Image: Constraint of the brain capacity to constraint of the environment?

5

\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \downarrow

	Matthew W. Crocker	8
Sawbat		
50 what		
Speech streams include no discrete boundaries to indicate w ends and another begins.	here one word	
We understand stammering non-fluent politicians and non-na Incomplete sentences are no problem for us.	ative speakers.	
We deal with ambiguity all the time without breaking down. C parsers often maintain thousands of possible interpretations.	Computer	
We have a vocabulary of about 60,000 words. We access so between 2-4 words/second (error rates around 2/1000 word)	omewhere s)	
We understand speech even faster than we can produce it. we can even finish each others sentences.	We are so fast,	
ф		÷

© Matthew W. Crocker	9
Sentence processing	
Sentence processing is the means by which the words of an utterance are combined to yield and interpretation	
👶 All people do it well	
It is a difficult task: complexity and ambiguity	
👃 Not simple 'retrieval', like lexical access	
Compositional: interpretation must be built, rapidly, even for novel word/ structure input	
\$	

+++++	© Matthew W. Crocker 11
I heories c	f Linguistic Knowledge
Theories of Syntax	
Representations:	Trees, feature structures, dependencies
Structure building substitution	g: PS-rules, transformations, unification, composition, tree
Constraints on re binding principles, I	presentations : Case marking, theta-Criterion, c-command, nead-foot principle
Competence Hypoth	esis
The mechanisms o representations of t	f language comprehension directly utilize the rules and he linguistic theory
ф	÷

↓↓↓↓↓↓ © Matthew W. Crocker	12
The Competence Hypothesis	
👃 Knowledge: Competence hypothesis	
Need to recover the meaning of sentences/utterances	
🐥 Assumptions about (levels of) representations	
Linguistic theory is isomorphic to human linguistic knowledge	
Comprehension and production share same knowledge	
Weak competence: people recover representations that are isomorphic to those of linguistic theories	
Strong competence: people directly use the grammatical knowledge & principles of linguistic theories	
ф	-

111111

© Matthew W. Crocker 35

Date		Lecture	Tutorial
	Monday		Wednesday
29.10.07	Lecture 1: Introduction, methods		Tut 0 (Cogent: Experimental Model)
05.11.07	Lecture 2:	Syntactic parsing	Tut 1 (Parsing in Cogent)
12.11.07	Lecture 3:	Theories of human parsing	Tut 2 (Backtracking/Reanalysis)
19.11.07	Lecture 4:	Reanalysis	Tut 3 (LC-Parsing, Mem.load)
26.11.07	Lecture 5:	Probabilistic Models I	Tut 4 (Cogent Projects)
03.12.07	Lecture 6:	Probabilistic Models II	Tut 5 (Cogent Projects)
10.12.07	Lecture 7:	Interactive Models	Lecture 8: Intro to Connectionism
17.12.07	Lecture 9: Learning in Neural Nets		Tut 6 (Group work)
07.01.08	Tut 7 (Group work)		Tut 8 (Proj. Demos)
14.01.08	Lecture 10: Pattern Association		Tut 9 (Using Tlearn)
21.01.08	Lecture 11: Morphology & Phonology		Tut 10 (Reading aloud)
28.01.08	Lecture 12: Simple Recurrent Networks		Tut 11 (English past-tense)
04.02.08	08 Lecture 13: More on SRNs		Tut 12 (SRNs I)
11.02.08	Lecture 14: Advanced architectures		Tut 13 (SRNs II)
18.02.08	08 Exam		
Matthew Cro	ocker	crocker@coli.uni-sb.de	
Marshall Ma	yberry	martym@coli.uni-sb,de	
Garance Par	is	gparis@coli.uni-sb.de	

