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Reading: J Elman (1990). Finding structure in time. Cognitive Science, 14, 179-211.
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Overview

n Two models: Single (connectionist) mechanisms account for dual-route
models of “rule-like” and “exceptional” behaviour:
q Reading Aloud: Models of adult performance

: Good performance on known and unknown words

: Models (normal) human behaviour (frequency x regularity, etc)

q English past-tense: Models Acquisition of Verb Morphology
: Forming the past tense from the present

q Problems: dual-route models better explain double dissociations

q “Static”: Map a single, isolated, input to a particular output

n Dynamical Systems: Simple Recurrent Networks
q Sequential XOR

q Letter sequences

q Detecting word boundaries

q Learning lexical classes

n Acquisition of Syntax
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Representing Time

n Many cognitive functions involve processing sequences of
inputs/outputs over time:
q Sequences of motor movements

q Sequences of sounds to produce a particular word

q Sequences of words encountered incrementally

n We can directly represent time as “order” in the input pattern vector
q Assumes buffering of events before processing, and processing takes

place all at once (I.e. in parallel)

q Maximum sequence length (duration) is fixed

q Does not easily distinguish relative versus absolute temporal position, e.g.
: 0 1 1 1 0 0 0 0 0

: 0 0 0 1 1 1 0 0 0

: Similar patterns are spatially distant (and learning such translational variance
requires an external teacher)

n We need a richer, more general representation of time
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Recurrent networks

n Suppose we want a network to generate a sequence of ouputs:
q E.g.: AAAB

n Consider the following network:
q Inputs are linear, rest are binary threshold units:

: Positive = 1

: Negative = 0

q Let A = 1 1; B = 0 0

q The neg. bias of the hidden node keeps activity
from being propagated during first cycles
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Recurrent networks with state units

n We can add inputs to the recurrent network which modulate the effect
of the state units:
q These inputs are called

“plan” units

n In this way inputting (0 1) results in AAAB, while inputting (1 0) results
in AB
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Attractors

n Some recurrent networks change over time such that the output settles
into a particular state: Attractor networks
q The set of possible states are the attractors

n Ability to model reaction times, robust to noisy input

n Can perform an arbitrary mapping from input to output
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Simple Recurrent Networks

n Recurrent networks are powerful for executing and learning complex
sequences, but difficult to design

n Simple recurrent networks can learn any sequence given as input
n We can tell they’ve learned by training them to predict the next item

n Hidden units are connected to “context” units:
These correspond to “state” units: they remember the state of the network on

the previous time step

The hidden units are able
to recycle information
over multiple time steps

Dynamic memory:
Identical inputs can
be treated differently
depending on context

Output Units

Input Units
Context Units

Hidden Units
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SRNs

n Context units are direct copies of hidden
units, the connections are not modifiable
q Connections are one-to-one
q Weights are fixed at 1.0

n Connections from context units to hidden
units are modifiable; weights are learned
just like all other connections
q Training is done via the backpropagation learning algorithm

n Solution: let time be represented by its affect on processing
q Dynamic properties which are responsive to temporal sequences
q Memory

n Dynamical systems: “any system whose behaviour at one point in time
depends in some way on its state at an earlier point in time”
q See: Rethinking Innateness, Chapter 4.
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Temporal XOR

n We have seen that XOR cannot be learned
by a simple 2-layer network

n We can translate it into a “temporal” task
by presenting input/output sequences:
q Input: 1 0 1 0 0 0 0 1 1 1 1 0 1 0 1 …

q Output: 0 1 0 0 0 0 1 1 1 1 0 1 0 1 ? …

n Training:
q Construct a sequence

of 3000 bits

q 600 passes

q Predict the next bit in
the sequence

q Prediction is based on
both the current input
and the networks
previous state

1 unit 2 units

1 unit

2 units
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Observations of XOR

n The network successfully predicts every third bit:
q Correct, since other bits are random

q Note: actually attempts to apply the XOR rule for each input bit

n The networks solution:
q At the hidden layer, 1 unit is active when the input contains a sequence of

identical elements

q The other unit is active when input elements alternate

q Thus the network has become sensitive to high/low “frequency”

q This is different from the static solution to the problem

n Note: the prediction task is analagous to autoassociation
q Instead of exploiting redundancy in patterns, it must discover the temporal

structure of the input

“Finding Structure in Time”
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Structure in Letter Sequences

n A simple feed forward network can be trained to learn simple
transitions between two adjacent inputs

n For XOR, the SRN has demonstrated the ability to learn dependencies
spanning 3 adjacent inputs
q Single bit inputs

q Only 4 different patterns

n Is the memory capacity of SRN sufficient to detect more complex
sequential patterns?
q Multi-bit inputs

q Greater temporal extent

q Larger inventory of sequences

n Imagine a simplified system of speech sounds
q 3 consonants

q 3 vowels

q Each consonant is followed by a fixed number of a particular vowel
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Performance

n Rules for “word” formation:
q b → ba

q d → dii

q g → guuu

n The 3 consonants were randomly combined to generate a 1000 letter
sequence

n The  consonants were then replaced using the above rules
q dbgbdd…  → diibaguuubadiidii…

q Each letter was then converted to a 6 bit distributed representation:

111010u

101010i

110010a

110101g

101101d

100101b

VoicedBackHighInterruptedVowelConsonant
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Training & Performance

n The network architecture has 6 input
and output units, with 20 hidden and
context units

n Training:
q Each input vector is presented

q Trained to predict the next input

q 200 passes through the sequence

n Tested on another random
sequence (using same rules)

n Error for part of the test is
shown in the graph
q Low error predicting vowels

q High error on consonants

n But this is the global pattern
error for the 6 bit vector …

6 units 20 units

6 units

20 units
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Deeper analysis of performance

n Can predict which vowel follows a consonant, and how many (?)

n We can examine the error for the individual bits, e.g. [1] and [4]:

n Bit 1, represents the feature Consonant and bit 4 represents High
q All consonants have the same feature for Consonant, but not for High

n Thus the network has also learned that after the correct number of
vowels, it expects some consonant: This requires the context units
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Remarks

n The network identifies patterns of longer duration than XOR

n The pattern length is variable
n Inputs are complex: 6 bit distributed representations

n Subregularities in the vector representations enable the network to
make partial predictions even where complete prediction is not
possible
q Depends, of course, on structuring of the input data

n Possible conclusions:
q Learning extended sequential dependencies is possible

q If dependencies are appropriately structured, this may facilitate learning
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Discovering word boundaries

n We often take for granted the existence of words, and yet for the child
language learner, input is largely in the form of an unsegmented
acoustic stream.

n How do children learn to identify word boundaries in such a signal?

n Example: Predicting the next sound
q Problem: discovering word boundaries in continuous speech

: Approximated by a corpus of continuous phonemes

q Task: network is presented with one phoneme and attempts to predict the
next one

q Manyyearsagoaboyandgirllivedbytheseatheyplayedhappily

n At time t: the network knows both the current input (phoneme at time t)
and the results of processing at time t-1 (context units)
Problem: discovering word boundaries in continuous speech
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The network and training

n We approximate the acoustic input with an orthographic
representation:

q Lexicon of 15 words and a sentence generating program
generated 200 sentences of length 4 to 9 words

q Concatenated to produce a stream of 1270 words, or 4963
letters

q Each letter converted to a random (not structured) 5 bit
vector

n Architecture:

n Training:
q 10 complete passes through

the sequence

5 units 20 units

5 units

20 units
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Predicting the next sound

n We can examine the error:
q High error at the onset of words

q Decreases during a word, as the sequence is increasingly predictable

q High error at word onset demonstrates the network has discovered word
boundaries



10

© Matthew W. Crocker Connectionist and Statistical Language Processing 19

Remarks

n Network learns statistics of co-occurences, which are graded
q Criteria for boundaries is relative

q E.g. see the ambiguity of “y”

q Could misidentify common co-occurrences as individual words
: Some evidence of this in early child language acquisition: idioms = words

n This simulation is not proposed as a model of word acquisition
q While listeners are often able to make “predictions” from partial input, it is

not the major goal of language learning

q Sound co-occurrences are only part of what identifies “words”

q This simulation considers only one aspect of available information

n The simulation demonstrates that there is information in the input
signal which serves as a cue to word boundaries

n The simulation demonstrates the sensitivity of SRNs to this information
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Discovering lexical classes from word order

n Surface word order is influences by numerous factors
q Syntax, selectional and subcategorization restrictions, discourse factors …
q Symbolic treatments appeal to relatively abstract, interacting rules which

often depend on rich, hierarchical representations
: Often, these accounts assume innately specified constraints

q Discovering information from word order might therefore be beyond the
capacity of the demonstrated sequential learning abilities of SRNs

n Maxim of empirical linguistics (Firth): “You shall know a word by the
company it keeps”
q verbs typically follow auxilliaries, and precede determiners
q nouns are often preceded by determiners
q Also, selectional information: verbs are followed by specific kinds of nouns

n First simulation: a sentence generator produced a set of simple (2 and
3 word) sentences using 29 lexical items from 13 “classes”
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Structure of Training Environment

n Categories of lexical items n Template for sentence generator

eatVERB-EAT

break,smashVERB-DESTROY

smell,seeVERB-PERCEPT

move,breakVERB-AGPAT

see,chaseVERB-TRAN

think,sleepVERB-INTRAN

cookie,sandwichNOUN-FOOD

glass,plateNOUN-FRAG

dragon,monsterNOUN-AGRESS

book,rockNOUN-INANIM

cat,mouseNOUN-ANIM

man,womanNOUN-HUM

ExamplesCategory

NOUN-HUMVERB-EATNOUN-AGRESS

NOUN-FOODVERB-EATNOUN-AGRESS

NOUN-ANIMVERB-EATNOUN-AGRESS

NOUN-FRAGVERB-DESTROYNOUN-AGRESS

VERB-AGPATNOUN-INANIM

VERB-AGPATNOUN-ANIM

NOUN-INANIMVERB-AGPATNOUN-ANIM

NOUN-ANIMVERB-TRANNOUN-ANIM

NOUN-FOODVERB-EATNOUN-ANIM

VERB-AGPATNOUN-HUM

NOUN-ANIMVERB-AGPATNOUN-HUM

NOUN-HUMVERB-TRANNOUN-HUM

VERB-INTRANNOUN-HUM

NOUN-FRAGVERB-DESTROYNOUN-HUM

NOUN-INANIMVERB-PERCEPTNOUN-HUM

NOUN-FOODVERB-EATNOUN-HUM

WORD 3WORD 2WORD 1
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Input encoding & training

n Localist representation
of each word (31 bits)

q Nothing of the word
class is reflected

n 10000 random 2-3
word sentences

q 27,354 sequence of
31 bit vectors

n Architecture:

n Trained on 6 complete
passes through the
sequence

31 units 150 units

31 units

150 units
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Performance

n Training yields an RMS error of 0.88

n RMS error rapid drops from 15.5 to 1, by simply learning to turn all
outputs off (due to sparse, localist representations)

n Prediction is non-deterministic: next input cannot be predicted with
absolute certainty, but neither is it random
q Word order and selectional restrictions partially constrain what words are

likely to appear next, and which cannot appear.

q We would expect the network to learn the frequency of occurrence of each
possible successor, for a given input sequence

n Output bit should be activated for all possible following words
q These output activations should be proportional to frequency

n Evaluation procedure:
q Compare network output to the vector of probabilities for each possible

next word, given the current word and context …
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Calculating Performance

n Output should be compared to expected frequencies
n Frequencies are determined from the training corpus

q Each word (winput) in a sentence is compared with all other sentences that
are up to that point identical (comparison set)

: Woman smash plate
: Woman smash glass
: Woman smash plate
: …

q We then compute of vector of the probability of occurrence for each
following word: this is the target, output for a particular input sequence

q Vector:{0 0 0 p(plate|smash, woman) 0 0 p(glass|smash, woman) 0 … 0 }
q This is compared to the output vector of the network, when the word

smash is presented following the word woman.

n When performance is evaluated this way, RMS is 0.053
q Mean cosine of the angle between output and probability: 0.916

: This corrects for the fact that the probability vector will necessarily have a
magnitude of 1, while the output activation vector need not.
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Remarks on performance

n Inputs contain no information about form class (orthogonal
representations) which can be used for making predictions
q Generalisations about the distribution of form classes, and the composition

of those classes, must be learned from co-occurrence

q We might therefore expect these generalisations to be captured by the
hidden unit activations evoked by each word in its context

n After 6 passes, connection strengths were “frozen”

n The corpus was then presented to the network again: outputs ignored
q Hidden unit activations for each input + context were saved

: 27354, 150 bit vectors

q The hidden unit vectors for each word, in all contexts, were averaged
: Yielding 29, 150 bit vectors

n The resulting vectors were clustered hierarchically …

© Matthew W. Crocker Connectionist and Statistical Language Processing 26

Cluster analysis:

n Lexical items with similar
properties are grouped
lower in the tree

n The network has discovered:
q Nouns vs. Verbs

q Verb subcategorization

q Animates/inanimates

q Humans/Animals

q Foods/Breakables/Objects

n The network discovers
ordering possibilities for
various work categories and
“subcategories”



14

© Matthew W. Crocker Connectionist and Statistical Language Processing 27

General Remarks

n Representation near one another form classes
n Higher level categories correspond to larger, more general regions

q Categories are hierarchical

n The hierarchical categorisation is “soft”
q Some categories are categorially distinct
q Others share properties and have less distinct boundaries
q Category membership can be marginal or unambiguous

n Cannot assign a given input to multiple positions
q I.e. cannot learn to distinguish multiple word “senses”

n Categories have no “content”: they are not grounded in the real world
q While learners do have, e.g. correlated visual input

n An important component of the words meaning is its context
q Hidden units reflect both the word and its prior context
q Words take much of their meaning from the context they appear in
q We should therefore be able to assign meaning to unknown words …
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Unknown words

n If we replace “man” with a novel
word “zog”

q “Zog” is represented by a new
input vector

q We can now present the new
testing corpus to the frozen
network

q Re-perform the hierarchical
cluster analysis …

n “Zog” bears the same relationship
to other words as “man” did in the
original training set

n The new word’s internal rep’n is
based on its behaviour
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General discussion

n The network learns hierarchical categories and classes
q Such classes are determined from word order/co-occurrence

q Learning takes place purely on the basis of observable data
: No pre-specified localist representations, etc.

n Predicts “context” effects in processing:
q Consistent with findings that human lexical access is sensitive to context

: Controversial: there is evidence both for (Tabossi) and against (Swinney)
immediate context effects in lexical access

q And that it is word classes that are predicted, not individual words
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Type-Token distinction

n Both symbolic systems and connectionist networks use
representations to refer to things:
q Symbolic systems use names

: Symbols typically refer to well-defined classes or categories of entities

q Networks use patterns of activations across hidden-units
: Representations are highly context dependent

n The central role of context implies a distinct representation of John, for
every context in with John occurs (which is an infinite number of Johni)

n Claim: distributed representations + context provides a solution to the
representation of type/token differences
q Distributed representations can learn new concepts as a patterns of

activations across a fixed number of hidden unit nodes
: A fixed number of analogue units can in principle learn an infinite number of

concepts

q Since SRN hidden units encode prior context, the hidden unit can in
principle provide an infinite memory
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Type/Token continued

n In practice there the number of concepts and memory is bounded
q Units are not truly continuous (e.g. numeric precision on the computer)
q Repeated application of logistic function to the memory results in

exponential decay
q Training environment may not be optimal for exploiting network capacity
q Actually representational capacity remains an open question

n The sentence processing network developed representations reflecting
aspects of the words meaning and grammatical category
q Apparent in the similarity structure of the “averaged” internal representation

of each word: the network’s representation of the word types

n  The network also distinguishes between specific occurrences of words
q The internal representation for each token of a word are very similar
q But do subtly distinguish between the same word in different contexts

n Thus SRNs provide a potentially interesting account of the type-token
distinction, which differs from the indexing or binding operations of
symbolic systems.
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Clustering of word “tokens”

n Hierarchical clustering of specific occurrences of BOY and GIRL
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Summary of Elman 1990

n Some problems change their nature when expressed as temporally:
q E.g. sequential XOR developed frequency sensitive units

n Time varying error signal can be a clue to temporal structure:
q Lower error in prediction suggests structure exists

n Increased sequential dependencies don’t result in worse performance:
q Longer and variable sequence duration were learned

q Also, the network was able to make partial predictiong (e.g. “consonant”)

n The representation of time and memory is task dependent:
q Networks intermix immediate task, with performing a task over time

q No explicit representation of time: rather “processing in context”

q Memory is bound up inextricably with the processing mechanisms

n Representation need not be flat, atomistic or unstructured:
q Sequential inputs give rise to “hierarchical” internal representations

“SRNs can discover rich representations implicit in many tasks,
including structure which unfolds over time”


