Computational Psycholinguistics

Lecture 8: Rational Analysis of Parsing

Matthew W Crocker

Computerlinguistik
Universität des Saarlandes

Probabilistic Models, so far ...

We have argued for probabilistic models because:

- Psychological evidence for frequency effects:
+ Word category \& sense, subcategorization, attachment (?)
\square Rational: probabilistic techniques explain the fact that people process language rapidly, accurately, and robustly.
- Interesting for modular architectures, where statistics provide good "heuristics" in the absence of full knowledge.
\square Three models, explain both good performance \& "pathologies"
- SLCM: a hidden Markov model of lexical category disambiguation
- Jurafsky: probabilistic models of parsing and lexical access + Combines structure \& frame probabilities, not "fully implemented".
- ICMM: implementation of a wide-coverage probabilistic parser:
+ Combines "phrase structure", and "phrase sequence" probabilities
Criticisms of :
- high performance probabilistic parsers are typically massively parallel and also nonincremental.
- practical concerns require the estimation of probabilities in ways which people may not need to, can we reason about "true likelihood" ?

More on Probabilistic Models

Psychological plausibility of wide-coverage probabilistic parsers:
How do memory restrictions and strict incrementality affect performance?
Brants \& Crocker (2000)

Probabilistic implementations contain many practical simplifications concerning:
\square How sub-probabilities are combined
How probabilities estimated are from corpora

Stepping Back: considering probabilistic accounts generally

- Serial probabilistic parsing
- Parallel, Bayesian parsing

Criticism: are likelihood models „optimal", do they account for the data
\square An alternative rational analysis: Informativity Theory

Psychological Plausibility

Are wide-coverage, probabilistic models cognitively plausible?

- Models: Jurafsky (1996); Crocker \& Brants (2000)

Cognitive constraints: Memory and Incrementality

- Broad coverage probabilistic parsers:
- High accuracy: 86\% precision/recall
- Robust: Analyse all and ill-formed input
- Non-incremental
- Massive parallelism
\square ICMM is a broad coverage, probabilistic parser:
- Restricted beam

I Incremental processing
What is the general performance of probabilistic parser that:

- Has restricted memory resources

Strictly incremental parsing (and pruning)

Design of the Experiment

Adapted a standard Stochastic Context Free Grammar:
Generality of results (not just for ICMM), not highest performance

- Incremental Processing + No look-ahead: full processing on each word
+ Immediate pruning: reduces memory requirements
+ Simple ranking strategy
- Pruning: active/inactive/both
+ Variable Beam: edges close to best are kept
+ Fixed Beam: fixed number of best edges are kept

Training: Wall street journal sections 2-21

- Testing: From section 22
$\square 1578$ sentences of length 40 or less

Results for Incremental SCFG

Baseline performance:
$\left.\begin{array}{l}\text { Recall: } 68.82 \% \\ \text { Precision: } 73.77 \%\end{array}\right\}$ F-Score: 71.21

- Chart size: 141,650
- Avg \# of analysis per span: 18.7

Speed: 1.8 Tokens/Sec

Restricted model:
Recall: 68.82\% $\}$ F-Score: 71.16Precision: 73.66\%Chart size: 1.15\%Avg \# of analysis per span: 2Speed: 301 Tokens/Sec

- Fixed beam (inactive: 2 active: 4)

A Simple Likelihood Account

■ Can we reason about the behaviour of a 'pure' likelihood model?

A simple probabilistic model:
At each point of ambiguity, simply select the structure with the greatest probability
Consider the sentence fragment:

- A) "The athlete realized his shoes were out of reach"

B B) "The athlete realized his goals yesterday"

- Priors: $\quad \mathrm{P}($ Hdo|realized $)=0.2 \quad \mathrm{P}($ Hes \mid realized $)=0.8$
\square When "his" is encountered, construct both the direct object and embedded sentence structures are built, and Hes is adopted.
- Prediction:
- (A) should be easy, (B) should require reanalysis after DO phrase.

A Bayesian Model

An 'Ideal' probabilistic model:
Incrementally determine probabilities for all possible structures
At a point of ambiguity, rank structures according to prior probabilities
As new words are found, use posterior probabilities (Bayes' Theorem):

$$
p\left(H_{i} \mid E\right)=\frac{P\left(E \mid H_{i}\right) P\left(H_{i}\right)}{P\left(E \mid H_{i}\right) P\left(H_{i}\right)+P\left(E \mid H_{j}\right) P\left(H_{j}\right)}
$$

Consider the sentence fragment: "The athlete realized his ...

- Priors: $\quad \mathrm{P}(\mathrm{Hdo})=0.2 \quad \mathrm{P}(\mathrm{Hes})=0.8$
- Conditional Probability of $\mathrm{P}(\mathrm{E} \mid \mathrm{H})$

$\mathrm{P}($ goals \mid Hdo $)=0.2$	$\mathrm{P}($ goals \mid Hes $)=0.0001$
$\mathrm{P}($ shoes \mid Hdo $)=0.00001$	P (shoes \mid Hes $)=0.0001$
$\mathrm{P}(\mathrm{X} \mid \mathrm{H} d o)=0.79999$	$\mathrm{P}(\mathrm{X} \mid$ Hes $)=0.9998$

Behaviour of Bayesian Model

When realized is encountered, hypothesise H_{es} :

	$\mathrm{P}(\mathrm{H} d o)$	$\mathrm{P}(\mathrm{Hes})$	
P (goals)	$\begin{gathered} \mathrm{P}(\text { goals } \mid \mathrm{H} d o) \mathrm{P}(\mathrm{H} d o) \\ .2 \times .2=.04 \end{gathered}$	$\begin{gathered} \mathrm{P}(\text { goals } \mid \mathrm{Hes}) \mathrm{P}(\mathrm{Hes}) \\ .0001 \times .8=.00008 \end{gathered}$. 04008
P (shoes)	$\begin{gathered} \mathrm{P}(\text { shoes } \mid \mathrm{H} d o) \mathrm{P}(\mathrm{H} d o) \\ .00001 \times .2=.000002 \end{gathered}$	$\begin{gathered} \mathrm{P}(\text { shoes } \mid \mathrm{Hes}) \mathrm{P}(\mathrm{Hes}) \\ .0001 \times .8=.00008 \end{gathered}$. 000082
P (Other)	$\begin{gathered} \mathrm{P}(\text { other } \mathrm{H} d o) \mathrm{P}(\mathrm{H} d o) \\ .79999 \times .2=.159998 \end{gathered}$	$\begin{gathered} \mathrm{P}(\text { other } \mathrm{H} e s) \mathrm{P}(\mathrm{Hes}) \\ .9998 \times .8=.79984 \end{gathered}$. 959838
	. 2	. 8	1.0

When new evidence is seen, compute $\mathrm{P}(\mathrm{H} \mid \mathrm{E})$:

$$
p\left(H_{i} \mid E\right)=\frac{P\left(E \mid H_{i}\right) P\left(H_{i}\right)}{P\left(E \mid H_{i}\right) P\left(H_{i}\right)+P\left(E \mid H_{j}\right) P\left(H_{j}\right)}
$$

- If shoes then:

$$
\begin{array}{|lc|}
\hline \mathrm{P}\left(\mathrm{H}_{\text {es }} \text { shoes }\right)=.98 & \mathrm{P}\left(\mathrm{H}_{\text {do }} \text { |shoes }\right)=.02 \\
\hline \mathrm{P}\left(\mathrm{H}_{\text {es }} \text { |goals }\right)=.002 & \mathrm{P}\left(\mathrm{H}_{\text {do }} \text { goals }\right)=.998 \\
\hline
\end{array}
$$

Behaviour: Should get the globally preferred analysis ...
\square Locally predicts initial preference for H_{es}.
Correctly "switches" to $H_{d o}$ based on new evidence.
Assumes full parallelism: psychologically implausible?

Likelihood prediction for NP/S

More Problems for Likelihood

NP/Z Complement Ambiguity: As the professor lectured the students ...

- Likelihood predictions:

When NP is encountered, build more likely (intransitive) structure + No difficulty if VP is then encountered (above) + Reanalysis effect only if second NP appears

- "As the professor lectured the students the sparrows became restless"

■ Experimental evidence: (Pickering, Traxler \& Crocker, 2000)
\square Opposite, to above!

Refining the Rational Analysis: Informativity

How can we explain the preference for object attachment (i.e. the NP/S and NP/Z findings) within a rational framework?

- Properties of the incremental parsing mechanism:
\square local ambiguities L_{i} must be resolved as they are encountered:
success $=$ settling on the globally correct analysis
$P($ global success $)=\prod_{i=1}^{n} P\left(\right.$ success at $\left.L_{i}\right)$
+ Initially adopting an analysis, which is ultimately correct
* Backing-out of a wrong analysis, and settling on the correct one
- Computational assumptions:
local reanalysis is often easy, long-distance reanalysis is difficult
\square only one (or few) interpretations can be 'foregrounded'
■ Foreground the analysis which can be most confidently "tested".
Increase probability of locally backing out of a wrong analysis
Avoid being led down the garden path by pure likelihood

Deriving the optimal function: Informativity

\Rightarrow Informativity:
$\Rightarrow \mathrm{I}=\mathrm{f}(\mathrm{P}, \mathrm{T})$

- $\mathrm{P}=$ prior probability $\mathrm{T}=$ testability
- Ideally:
- Priors: are based on our experience
- Testability: measures how useful new evidence E will be in estimating $P(H \mid E)$.
- $\mathrm{P}\left(\right.$ Pass $\left._{i}\right)=$ probability that evidence confirms H_{i}
- We define Specificity for H_{i} as:
$\square S_{i}=1 / \mathrm{P}\left(\right.$ Pass $\left._{i}\right)$

Rational behaviour: maximise the chance of making the correct analysis, soon.

```
The Derivation:
Consider two hypotheses }\mp@subsup{\textrm{H}}{1}{}&\mp@subsup{\textrm{H}}{2}{}\mathrm{ :
    P(\mp@subsup{Correct }{1}{2})=P(\mp@subsup{H}{1}{},\mp@subsup{\mathrm{ Pass }}{1}{})+P(\mp@subsup{H}{2}{},\mp@subsup{\mathrm{ Fail }}{1}{})
    =P(\mp@subsup{Pass}{1}{}|\mp@subsup{H}{1}{})P(\mp@subsup{H}{1}{})+P(\mp@subsup{F}{\mathrm{ Fail }}{1}|}|\mp@subsup{H}{2}{})P(\mp@subsup{H}{2}{}
    =P(\mp@subsup{H}{1}{})+(1-1/\mp@subsup{S}{1}{})P(\mp@subsup{H}{2}{2}
    P(\mp@subsup{Correct }{2}{2})=P(\mp@subsup{\textrm{H}}{2}{})+(1-1/\mp@subsup{S}{2}{}})P(\mp@subsup{H}{1}{}
Choose }\mp@subsup{\textrm{H}}{\textrm{i}}{}\mathrm{ where P(Correcti) greatest:
    P(\mp@subsup{Correct }{1}{})>P(\mp@subsup{\mathrm{ Correct }}{2}{})
    P(H1)+(1-1/S ( )P(H2)>
        P(H2)+(1-1/S S)P(H1)
    S
So, choose H}\mp@subsup{H}{i}{}\mathrm{ where SiP(H
    maximised
```


NP/S Revisited

Pickering, Traxler \& Crocker: NP vs. S
The athlete realised his shoes were out of reach The athlete realised his goals were out of reach For a set of S-bias verbs (corpus \& completion).

Eye-tracking study revealed:
\rightarrow Increased RTs in coloured region

Consistent with initial object attachment
\checkmark Confirms the prediction of the Informativity Model
x Falsifies the analysis based on strict Maximum Likelihood.

Estimating Informativity: An example

Choose H_{i} where $S_{i} P\left(H_{i}\right)$ is maximised

$$
P\left(H_{i}\right)=\frac{f\left(H_{i}\right)}{\sum_{\forall j} f\left(H_{j}\right)} \quad S_{i}=\frac{\text { CorpusSize }}{\sum_{\forall w j \in \text { Passi }} f\left(w_{j}\right)}
$$

- Extract 100 tokens for each verb, from the BNC using GSEARCH
- Then estimate P and S as above:
- $\mathrm{P}\left(\mathrm{H}_{\mathrm{NP}} \mid\right.$ verb $)=0.3 \quad \mathrm{P}\left(\mathrm{H}_{\mathrm{s}} \mid\right.$ verb $)=0.55 \quad \mathrm{P}\left(\mathrm{H}_{\mathrm{X}} \mid\right.$ verb $)=0.15$
- Specificity: $S_{N P}$ is underestimated due to small corpus counts
- as |Corpus) increases, the number of words that Pass will not increase as quickly for S_{NP} as for S_{S}

Specificity:	Object	Subject
admit	105	30
decide	90	399
hint	1187	363
hmply	352	30
pretend	896	122
realise	81	45
Total	2711	989

Further Predictions

General preference for argument attachment over non-argument
\square Since selectional restriction will correlate with Informativity
\square Prefers formation of dependencies with existing structure:
\square Clause boundary: "When John walks the fish jump"
\square NP PP V: "The girl from Holland laughed/arrived" [Dutch]

When Specificity is constant, use Priors:

- "Tuning" effects in modifier attachment, E.g. Relative clauses

Possibly lexically specific cases:
\square PP-attachment:

+ "I ate the pizza with pepperoni/a fork"
+ "I saw the man with the moustache/the binoculars"

