Overview

- General motivation for probabilistic models
- Empirical Support and Rational Analysis
- Probabilistic models of sentence processing
 - Interactive, constraint-based accounts (connectionist)
 - Symbolic parsing models (statistical)
- Probabilistic Models: Breadth and Depth
 - SLCM: Maximal likelihood for category disambiguation
 - Statistical models of human parsing (Jurafsky)
 - Wide coverage probabilistic sentence processing (Crocker & Brants)
 - Criticisms of likelihood, and possible alternative: Informativity
Statistical Models of Language

- Statistics in linguistics [Abney, 1996]
 - Acquisition, change, and variation
 - Ambiguity and graded acceptability
 - Brings ‘performance’ back into linguistics

- Statistics in psycholinguistics
 - Strong evidence for “frequency” effects:
 - Word recognition, category preferences, structures

- Statistics in computational linguistics
 - Effective: accurate and robust
 - Eschews ‘AI’ problem
 - Trainable & efficient

Statistical Mechanisms

- Statistical information in the lexicon:
 - Frequencies or ‘activations’

- Statistics in grammar and processing:
 - Association of grammatical knowledge with probabilistic weights
 - Could be used to model graded acceptability and/or disambiguation
 - Statistical processing mechanisms:
 - Sequences of parsing operations are probabilistic
 - Based on parse state, rather than structure/grammar
 - Are complex structures associated with probabilities?
 - If so, at what level of granularity

- Are statistics used “strategically” by the HSPM, or simply a by product of (e.g. neural) architecture?
Motivating the Probabilistic HSPM

- **Empirical:** Evidence for the use of frequencies
 - Sense disambiguation [DM&R]
 - Category disambiguation [Corley&Crocker]
 - Subcategorization frame selection [TT&K, Garnsey]
 - Structural preferences [Mitchell et al]

- **Rational:** Near optimal heuristic behaviour
 - Adaptive: select the “most likely” analysis
 - Optimal category disambiguation [C&C]
 - Parsing [Jurafsky, Crocker & Brants]
 - Ideal for restricted (modular) architectures, where full knowledge-based decisions aren’t possible

- **Methodological:**
 - Transparently combine symbolic and stochastic mechanisms
 - Scaleable, predictive models
 - Blurring the boundary between rational and empirical ...

Garden Path versus Garden Variety

- **Human Language Processing: Garden Paths**
 - ✗ Incremental disambiguation process can fail
 - ✗ Memory limitations lead to breakdown
 - ✗ Garden paths lead to misinterpretations, complexity or breakdown

- **Human Language Processing: Garden Variety**
 - ✓ Accurate: typically recover the correct interpretation
 - ✓ Robust: are able to interpret ungrammatical & noisy input
 - ✓ Fast: people process utterances in real-time, incrementally

- **Hypothesis:** In general people seem well-adapted for language.
 - Goal: Our models must account for, and explain:
 - Processing difficulty in specific circumstances
 - Effective performance in general
 - Method: Apply Rational Analysis
Rational Analysis

Hypothesis: People approach optimal adaptation to the task of language understanding.

Rational Analysis: when a cognitive system is optimally adapted
- Goals: Obtain the most likely interpretation
- Environment: Input is incremental and ambiguous
- Computational: Finiteness, 'foregrounded' interpretation

Constructing a Rational Analysis:
- Derive the Optimal Function
- Test against the empirical data
- Revise the Optimal Function

Use probabilistic frameworks to reason about rational choice
- Initial hypothesis: The optimal function is one which maximises the likelihood of obtaining the correct interpretation of an utterance

Maximal Likelihood Models

- Language Technology: Broad coverage, high-accuracy parsing
 - Parse with the highest probability is usually correct:
 - E.g. Ratnaparki's Maximum Entropy parser: 86% parse accuracy
 - Also: speech recognition, POS tagging, semantic clustering, word sense

- Psycholinguistic evidence for the use of frequencies
 - Category disambiguation, word sense, subcategorization frame selection, structural preferences

- Psychological Models:
 - Constraint-based and connectionist (Tanenhaus, Macdonald, ...)
 - Probabilities contribute to determining activations
 - Jurafsky: probabilistic access and disambiguation
 - Parallel parser with beam search, uses constituent and valence probabilities

→ Determine the most likely analysis for a given input:

\[
\arg \max_i P(s_i) \text{ for all } s_i \in S
\]

→ Use estimates based on frequencies in prior experience
The Grain Problem

- Experience-based models rely on frequency of prior linguistic exposure to determine preferences.
- There are many ways to realise experience-based models
 - Possibilities: What kinds of things do we count?
 - Actual sentence/structure occurrences? Data too sparse?
 - Head driven: i.e. verb subcategorization frequencies
 - Do we distinguish tenses? Senses?
 - Word level, part-of-speech
 - Tuning is structural: NP P NP RC vs NP P NP RC
 - Interesting issues:
 - Does all experience have equal weight (old vs. new)?
 - Are more frequent “words” or “strings” (idioms) dealt with using finer grain statistics that less frequent?

Statistical Lexical Category Module

- Sentence processing involves the resolution of lexical, syntactic, and semantic ambiguity.
 - Solution 1: These are not distinct problems
 - Solution 2: Modularity, divide and conquer
- Category ambiguity:
 - *Time flies like an arrow.*
- Extent of ambiguity:
 - 10.9% (types)
 - 65.8% (tokens)
 (Brown corpus)
The Model: A Simple POS Tagger

- Find the best category path \((t_1, \ldots, t_n)\) for an input sequence of words \((w_1, \ldots, w_n)\):

\[
P(t_1, \ldots, t_n, w_1, \ldots, w_n) = \prod_{i=1}^{n} P(w_i | t_i) P(t_i | t_{i-1})
\]

- Initially preferred category depends on:
 - Lexical bias: \(P(w_i | t_i)\)
 - Category context: \(P(t_i | t_{i-1})\)

- Categories are assigned incrementally
- Best category path may require revision

2 Predictions

- The Statistical Hypothesis:
 - Lexical word-category frequencies are used for initial category resolution

- The Modularity Hypothesis:
 - Initial category disambiguation is modular, and not determined by (e.g. syntactic) context

- Two experiments investigate
 - The use word-category statistics
 - Autonomy from syntactic context
Statistical Lexical Category Disambiguation

- Initially preferred category depends on:
 - Lexical bias: $P(w_i | t_i)$
 - Category context: $P(t_i | t_{i-1})$
 - Trained on the Susanne corpus

- Categories are assigned incrementally
 - the warehouse *prices* the beer very modestly
 - DET N N/V V!
 - the warehouse *prices* are cheaper than the rest
 - DET N N/V N ...
 - the warehouse *makes* the beer very carefully
 - DET N N/V V ...
 - the warehouse *makes* are cheaper than the rest
 - DET N N/V N!

- Interaction between bias and disambiguation
- Lexical category frequency determines initial category decisions

Modular Category Disambiguation ?

- Do initial decisions reflect integrated use both lexical and syntactic constraints/biases (e.g. Jurafsky) ?
- Do initial decisions prioritise lexical category biases (Corley&Crocker) ?
- N/V with immediate/late syntactic disambiguation
 a) The foreman knows that the warehouse *prices* are cheaper than the rest. [N-bias, N-disamb]
 b) The foreman knows that the warehouse *price* is cheaper than the rest. [N-bias, N-unamb]

- Main effect of bias in disambiguating region:
 - Decisions are based on word bias, ignore syntactic constraints.
 - Implies lexical category doesn’t include number
 - Problematic for lexicalist syntactic theories
 - At c2, VA/VU difference is significant:
 - Predicted by SLCM; contra integrated models
 - Also accounted for by competition models
‘That’ Ambiguity (Juliano & Tanenhaus)

- ‘That’ ambiguity in syntactic context:
 - *That* experienced diplomat(s) would be very helpful ...
 - The lawyer insisted *that* experienced diplomat(s) would be very helpful

- Initially: det=.35 comp=.11
- Post-verbally: comp=.93 det=.06

- Found increased RT when dispreferred (according to context) is forced

- Advocates bigram over unigram:
 - $P(\text{that}|\text{comp}) = 1$, $P(\text{that}|\text{det}) = .171$
 - $P(\text{comp}|\text{verb}) = .0234$, $P(\text{det}|\text{verb}) = .0296$
 - $P(\text{comp}|\text{start}) = .0003$, $P(\text{det}|\text{start}) = .0652$

Internal Reanalysis

- The tagger model predicts internal reanalysis for some sequences.
- Viterbi: revise most likely category sequence based on new evidence

- Right context in RR/MV ambiguities: [MacDonald 1994]
 - The sleek greyhound *raced at the track* won the event
 - The sleek greyhound *admired at the track* won the event

- *raced* = intrans bias, *admired* = trans bias

- Increased RT (blue) indicate bias is used
An SLCM Account

- Assume transitive/intransitive subcategories
 - Extracted transitivity from the Susanne corpus
 - Simulation with (similar) examples:
 + The man *fought at the police* station fainted [intransitive]
 + The man *held at the police* station fainted [transitive]

![Graphs showing correct predictions](image)

Correctly predicts the garden path effect **Correctly predicts immediate reanalysis**

SLCM Summary

- Psychologically plausible
 - lower statistical complexity than other models
- High accuracy in general
 - explains why people perform well overall
- Explains where people have difficulty
 - Statistical: category frequency → initial category decisions ✓
 - Modular: syntax → initial category decisions x
 - Bigram effect: “that” ambiguity [Juliano and Tanenhaus]
 - Reanalysis of verb transitivity for ‘reduced relatives’ [MacDonald]

Comments:
- combines optimality with psychological plausibility
- category preference appears truly frequency-based
- indication of which features are exploited [e.g. transitivity, not number]