
1

Computational Psycholinguistics

Lecture 2: Parsing

Matthew W Crocker

Computerlinguistik

Universität des Saarlandes

© Matthew W. Crocker Computational Psycholinguistics 2

Lecture Overview

� Incremental Parsing
❑ Top-down

❑ Bottom-up

❑ Mixed strategy

� Ambiguity and parsing
❑ Serial with Backtracking (non-deterministic)

❑ Serial deterministic

❑ Parallel

2

© Matthew W. Crocker Computational Psycholinguistics 3

A Simple Theory of Grammar

The Grammar

� S NP VP

� NP PN

� NP Det N

� NP NP PP

� PP P NP

� VP V

� VP V NP

� VP V NP PP

The Lexicon

� Det = {the, a, every}

� N = {man, woman, book,
 hill, telescope}

� PN = {John, Mary}

� P = {on, with}

� V = {saw, put, open,
 read, reads}

© Matthew W. Crocker Computational Psycholinguistics 4

Parsing Algorithms

� How do we build a syntactic analysis for an input utterance?
❑ “The man read every book”

 S
 ei

 NP VP
 ty ru

 Det N V NP
 g g g tu

 the man read Det N
 g g

 every book

❑ What do we know about how people parse and interpret utterances?

3

© Matthew W. Crocker Computational Psycholinguistics 5

A Generated Sentence

� the man read every book
 S
 ei S NP VP

 NP VP
 ty ru NP Det N VP V NP

Det N V NP
 g g g tu NP Det N

the man read Det N
 g g

 every book

© Matthew W. Crocker Computational Psycholinguistics 6

Phrase Structure Grammars

� What language is generated by a PSG:
❑ Node admissibility criterion

� Issues:
❑ Finite grammar and lexicon can generates an infinite language (and infinite

number of strings)

❑ Recursion: e.g. NP NP PP

� Equivalent to a push-down automata (require ‘memory’, unlike a FSA)

� Not quite powerful enough for NLs:
❑ Minimally, we probably require “indexed” context free languages

� But, it is also possible to approximate a complex grammar with a
simpler formalism (FSA, regular languages)
❑ I.e. if we limit the depth of recursion, exploit “complex” states

4

© Matthew W. Crocker Computational Psycholinguistics 7

Parsing Algorithms for PSGs

� An algorithm to recover the parse tree for an utterance, given that it is
in the language

� Dimensions of variation:
❑ left-to-right, head-driven, right to left

❑ top-down, bottom-up, mixed

❑ deterministic, serial, parallel

� Complexity:
❑ Time: what time is required (worst or average case) to parse a sentence as

a function of sentence length, grammar size?

❑ Space: how much memory does the parser require?

© Matthew W. Crocker Computational Psycholinguistics 8

Bottom-up Parsing

� “The woman reads”
 Det [Det] N [Det,N] NP [NP]
 g g ty

 the woman Det N
 g g

 the woman

 V [NP,V] VP [NP,VP] S [S]
 g g ru

 reads V NP VP
 g ty g

 reads Det N V
 g g g

 the woman reads

5

© Matthew W. Crocker Computational Psycholinguistics 9

Shift-reduce Algorithm

❶ Initialise Stack = []

❷ loop: Either shift:
❑ Determine category, C, for next word in sentence;

❑ Push C onto the stack;

❸ Or reduce:
❑ If categories on the Stack match the RHS of a rule:

✚ Remove those categories from the Stack;

✚ Push the LHS category onto the Stack;

❹ No more words to process?

❑ If Stack = [S], then done;

❺ Goto ➁

© Matthew W. Crocker Computational Psycholinguistics 10

Top-down Parsing

� “The woman reads”
 S [S] S [NP,VP] S [Det,N,VP]
 ty ty

 NP VP NP VP
 ty

 Det N

 S [N,VP] S [VP] S []
 ty ty ti

 NP VP NP VP NP VP
 ty ty ty g

Det N Det N Det N V
 g g g g g g

the the woman the woman reads

6

© Matthew W. Crocker Computational Psycholinguistics 11

Top-down Algorithm

❶ Initialise Stack = [S]

❷ If top(Stack) is a non-terminal, N:
❑ Select rule N RHS;

❑ pop(N) off the stack and push(RHS) on the stack;

❸ If top(Stack) is a pre-terminal, P:
❑ Get next word, W, from the input;

❑ If P W, then pop(P) from the stack;

❑ Else fail;

❹ No more words to process?

❑ If Stack = [], then done;

❺ Goto ➁

© Matthew W. Crocker Computational Psycholinguistics 12

Evaluating top-down & bottom-up

� Are these parsers psychologically plausible?

� Incrementality:
❑ Bottom-up: no

❑ Top-down: yes

� Input-driven:
❑ Bottom-up: yes

❑ Top-down: no

➨ Problems with left-recursion

7

© Matthew W. Crocker Computational Psycholinguistics 13

A Psychologically Plausible Parser

� Left-Corner Parsing

� Rules are ‘activated’ by their ‘left-corner’

 V VP NP
 g ru 9

 give V NP Det N PP

� Combines input-driven with top-down

� There is a ‘class’ of LC parsers

© Matthew W. Crocker Computational Psycholinguistics 14

An example LC parse

� “The woman read the book”

 S S S S
 ty ti

 NP NP VP NP VP
 ty ty 5 ty

Det Det N Det N the woman V NP

the the the woman read

[S] [N,S] [VP] [NP]

� Is this incremental?

8

© Matthew W. Crocker Computational Psycholinguistics 15

Evaluating the LC Parser

� Almost incremental

� Variations:
❑ Using a ‘top-down’ oracle of LC relation

❑ Arc-standard versus arc-eager
 S S
 ty

 NP NP VP
 ty ty

 Det N Det N

 the ... the …

� Left-recursion: NP NP PP

© Matthew W. Crocker Computational Psycholinguistics 16

Incrementality and Memory

� It wasn’t incrementality that led to the LC algorithm, but memory load
❑ “The mouse died”

❑ “The mouse the cat chased died”

❑ “The mouse the cat the dog bit chased died”
(Cf: “The mouse that the cat that the dog bit chased died”)

� Grammatical, not ambiguous, what’s the problem?

� Memory load: too high for centre embedding
❑ “[The mouse [the cat [the dog bit] chased] died]”

9

© Matthew W. Crocker Computational Psycholinguistics 17

Memory Load in Parsing

� Left-embedding (LE) is easy:
❑ [[[John’s brother]’s car door]’s handle] broke off.

� So is right-embedding (RE):
❑ John believes [Bill knows [Mary said [she likes cats]]]

� But centre-embedding (CE) is hard:
❑ [The mouse [the cat [the dog bit] chased] died]

� Top-down: LE: hard CE: hard RE: easy

� Bottom-up: LE: easy CE: hard RE: hard

� Left-corner: LE: easy CE: hard RE: easy

© Matthew W. Crocker Computational Psycholinguistics 18

Ambiguity in Parsing

� Parsing involves rule selection: what if more than one rule can be
selected?

� Local ambiguity: a parse derivation may fail later

� Global ambiguity: multiple parses can succeed

� How can we handle local and global ambiguities during parsing:
❑ Backtracking

❑ Parallelism

❑ Determinism

❑ Underspecification

10

© Matthew W. Crocker Computational Psycholinguistics 19

Backtracking Parsers

� Parsing is a sequence of rule selections

� If at one point, more than one rule can be applied, this is called a
choice point

� Make a decision, based on some selection rule

� If subsequently parsing ‘blocks’, return to a choice point and re-parse
from there

� Which choice point to return to?
❑ usually the last, why?

❑ what other choice point selection rules could be used

© Matthew W. Crocker Computational Psycholinguistics 20

Backtracking: an example

� “Bill reads”
S S S S S
 ty ty ty ty

 NP VP NP VP NP VP NP VP
 ty ty g

 Det N Det N PN

 Bill? Bill ...

 FAIL SUCCEED
backtrack

11

© Matthew W. Crocker Computational Psycholinguistics 21

Deterministic parsing

� A deterministic parser consists of unambiguous parsing actions.
❑ At every “state” during parsing (current parse + current input) the parser

can take precisely one action

� Marcus (1980) “Parsifal”: A theory of human syntactic recognition
❑ A deterministic LR parser for English

❑ Easy sentences are those which can be parsed deterministically

❑ Sentences which cannot be parsed, are predicted to be garden paths

� Criticism:
❑ Not incremental:

✚ Constituents are often buffered, requires 3 look ahead constituents

✚ Relies on information from selecting heads (I.e. verbs):
� Fine for English, but poor for head-final languages

❑ Poor explanation of “graded” human behaviour and the influence of various
information sources (semantics, frequency, etc.)

© Matthew W. Crocker Computational Psycholinguistics 22

Parallel Parsers

� Build parse trees through successive rule selections

� If more than one rule may be applied, create a new parse derivation for
each possibility

� Pursue all parses in parallel

� If any of the parses ‘blocks’, discard it

� Note: because of multiple local ambiguities, the number of parallel
derivation grows exponentially

� Bounded parallelism: pursue a fixed number:
❑ How do we choose which ones to keep?

12

© Matthew W. Crocker Computational Psycholinguistics 23

Parallel: an example

� “Bill reads”
S S S S S
 ty ty ty ty

 NP VP NP VP NP VP NP VP
 ty ty ty

 Det N Det N Det N
 Bill?

 S S
 ty ty

 NP VP NP VP
 g g

 PN PN
 Bill? Bill

parse 1

parse 2

Discard

Pursue

© Matthew W. Crocker Computational Psycholinguistics 24

Issues

� What is an appropriate mechanism for constructing interpretations:
❑ Incremental parsing & memory characteristics
❑ Left-corner seems like a good first approximation
❑ Problem: true incrementality leads to recursion problems

� Rule selection
❑ On what basis should we decide between alternatives?

✚ In selecting a single structure or ranking parallel alternatives?

❑ What information sources: Syntax, semantics, recency, memory

� Backtracking/reanalysis
❑ What triggers reanalysis?
❑ Mechanical versus intelligent reanalysis?
❑ Standard backtracking involves destruction of previously parsed material,

can we implement more intelligent reanalysis mechanisms?
❑ In parallel models, how are parsers and when are alternative “re-ranked”?

