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This paper describes a fully implemented, broad-coverage model of human syntactic processing. The
model uses probabilistic parsing techniques, which combine phrase structure, lexical category, and
limited subcategory probabilities with an incremental, left-to-right “pruning” mechanism based on
cascaded Markov models. The parameters of the system are established through a uniform training
algorithm, which determines maximum-likelihood estimates from a parsed corpus. The probabilistic
parsing mechanism enables the system to achieve good accuracy on typical, “garden-variety” lan-
guage (i.e., when tested on corpora). Furthermore, the incremental probabilistic ranking of the pre-
ferred analyses during parsing also naturally explains observed human behavior for a range of
garden-path structures. We do not make strong psychological claims about the specific probabilistic
mechanism discussed here, which is limited by a number of practical considerations. Rather, we
argue incremental probabilistic parsing models are, in general, extremely well suited to explaining
this dual nature—generally good and occasionally pathological—of human linguistic performance.
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INTRODUCTION

Theories of human sentence processing have largely been shaped by the study
of pathologies in human sentence processing. The principles and parsing
mechanisms that have been proposed are primarily directed at explaining the
difficulty people have in comprehending particular structures that are ambigu-
ous or memory intensive. While often insightful, this approach diverts atten-
tion of psycholinguists from the remarkable, yet often ignored, fact that
people are, in reality, extremely accurate and effective in understanding the
vast majority of utterances they encounter. That is to say, while pathologies
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are extremely useful in exploring the boundaries of human performance and
testing the predictions of particular mechanisms, this is only truly of value in
the context of a concrete model of how people process language in general.

It is, therefore, not surprising that no existing model of human parsing
attempts to account for both general human performance, on “garden-variety”
language, and pathological behavior observed for particular ambiguities,
i.e., garden-path sentences. In this paper, we argue for the importance of
studying the behavior of robust, accurate, and broad-coverage parsing sys-
tems as models of human performance. The performance of the human sen-
tence processor in dealing with the complexity, ambiguity, and noise, which
pervades the linguistic environment suggests a mechanism that is extremely
well adapted to its task. Computational systems that attempt to approach
such coverage and accuracy require relatively powerful techniques. It is,
therefore, far from clear how most extant psychological models, which are
founded on assumptions of highly restricted parsing architectures, can possibly
be scaled up to explain what can only be described as the exceptional stan-
dard of human performance.

We present the results of experiments conducted using the incremental
cascaded Markov model(ICMM), a psychological model of parsing which
is based on the broad coverage statistical parsing techniques developed
by Brants (1999b). ICMM is consistent with accounts of human language
processing that advocate probabilistic mechanisms for parsing and disam-
biguation (e.g. Jurafsky, 1996; MacDonald Perlmutter, & Seidenberg, 1994;
Tanenhaus Spivey-Knowlton, & Hanna, 2000; Corley & Crocker, 2000).
ICMM is a maximum-likelihood model, which combines stochastic context
free grammar with a generalization of the hidden Markov models. The pre-
sent work can be seen as a natural extension of the Statistical Lexical
Category Model (Corley & Crocker, 2000), which posits a hidden Markov
model-based account of human lexical category disambiguation. ICMM
extends the use of Markov models from category disambiguation to full
parsing, using layered, or cascaded,Markov models to select the most likely
syntactic analyses for a given input (Brants, 1999a). To investigate psycho-
logical plausibility of the model, it has been adapted to process utterances
incrementally, selecting only a subset (beam) of preferred syntactic analy-
ses. It is important to note that restricting probabilistic parsers in this way
has been separately shown to have virtually no detrimental effect on the accu-
racy levels for such parsers (Brants & Crocker, 2000).

As with the majority of broad-coverage, probabilistic parsers, ICMM is
based on a chart-parsing algorithm, as this provides a natural way to com-
pute all the possible structures, which are then assigned a probability, with
low probability structures being pruned. It is important to clarify that we are
not claiming particular plausibility for such mechanisms here, rather we are
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defending the general success of probabilistic models, which we assume can be
associated with more psychologically justifiable models of structure building.

We begin with a brief review of probabilistic models of syntactic pro-
cessing and their motivation. In particular, we observe that none of the models
address the issues of general, as well as pathological, linguistic performance.
We then give a description of ICMM, before presenting several simulations
of the system, showing how a range of observed psycholinguistic behaviors
is accounted for. In particular, we consider noun-verb category ambiguities,
that ambiguities, and reduced relative clauses. In the final simulation, we also
explain how the model accounts for the experimental findings of Pickering,
Traxler, & Crocker (2000), which seemingly contradict the predictions of a
pure maximum-likelihood model in NP/S complement ambiguities.

PROBABILISTIC MODELS OF SENTENCE PROCESSING

Recent research in psycholinguistics has placed increased emphasis on
the role of probabilistic mechanisms (see, e.g., Seidenberg, 1997). We sug-
gest the development of probabilistically based models of human sentence
processing is motivated based on the following.

Empirical

There is strong and wide ranging psycholinguistic evidence that the
human language processor is sensitive to the frequency of lexical alternatives:
Duffy, Morris, and Rayner (1988) demonstrated effects of frequency on word
sense disambiguation. Corley and Crocker (2000) demonstrate how a statisti-
cal model of category disambiguation, when trained on a corpus, successfully
models a number of observed experimental findings (see also Crocker &
Corley, in press, for further experimental support). Trueswell (1996) demon-
strates the sensitivity of the human parser to the preferred tense for a given
verb. Jurafsky (1996) motivates a probabilistic model of lexical and syntactic
processes. Probabilistic models are further supported by recent corpus studies
(Lapata, Keller, Schulte im Walde submitted) which suggest that corpus
frequencies correlate well with subcategorization preferences observed in
completion studies by Trueswell, Tanenhaus, and Kello (1993), Garnsey,
Pearlmuter, Myers, and Lotockey (1997), Pickering et al. (2000) and others.

Computational

The use of statistical language models in computational linguistics
has proved to be extremely successful in developing broad-coverage mod-
els, which can accurately estimate the most likely parse (Collins, 1996;
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Ratnaparkhi, 1997). In the context of psychological modeling, Brants and
Crocker (2000) have also demonstrated that the performance of probabilistic
parsing models does not deteriorate, even when incremental processing and
strict memory limitations are imposed.

Rational

The success of probabilistic models helps explain the rational nature of
the human language processor, i.e., that the human parser is generally able
to accurately, rapidly, and robustly recover the appropriate interpretation
for the utterances it encounters. Within the framework of Rational Analysis
(Anderson, 1991), Chater, Crocker, and Pickering (1998) motivate the use
of a probabilistic framework in deriving a model of human parsing and
reanalysis based on the hypothesis that the human language processor is
well adapted to the problem of resolving linguistic ambiguity. Crocker and
Corley (in press) also point out that probabilistic mechanisms provide
highly accurate heuristic mechanisms, which are particularly well suited to
modular architectures where full knowledge is not immediately available,
and must be approximated.

Research in experimental and computational psycholinguistics has
focussed primarily on explaining the role of probabilistic mechanisms for
several well-known garden-path constructions. Constraint-based models, for
example, have long argued for the importance of lexical biases in ambigu-
ity resolution (e.g. MacDonald et al.,1994; Trueswell, 1996; McRae et al.,
1998). The model outlined by MacDonald and colleagues is probabilistic in
the sense that alternative feature values of ambiguous lexical items are asso-
ciated with probabilistically determined activations (e.g., examinedmight
have a higher activation as transitive, rather than intransitive). Lexical items
are combined to build syntactic analyses, with the activation of each analy-
sis being determined by the combined activation of the relevant linguistic
constraints. To our knowledge, however, the model is not implemented, nor
is it very transparent how probabilistic feature activations are to be acquired
and combined. As a result, the model is not sufficiently well specified to
make concrete predictions.

In contrast, McRae et al. attempt to concretely demonstrate the predic-
tions of a model, which simultaneously combines several probabilistic con-
straints to resolve syntactic ambiguity using the competition-integrationmodel.
Crucially, however, McRae et al. only model the interaction of constraints in
selectingamong interpretations and do not model the parse/interpretation-
building process itself. The model is interesting, however, in that the con-
straint activations are established empirically (using a mixture of corpus and
norming studies) and constraint weights are then determined by fitting off-
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line completion data. The resulting model is then shown to provide a good
fit of human reading time data for the same items.

While both of these models can be viewed as incorporating probabilistic
constraints, there are some problems with regarding this as a truly probabilis-
tic approach. The McRae model conflates constraints that are established
using corpora with those derived (linearly) from ratings. In addition, the
competition-integration mechanism only uses these “probabilities” to deter-
mine initial activation of analyses—subsequent cycling of the model changes
activations in such a way that they no longer have any probabilistic interpre-
tation. The MacDonald et al. model is also subject to the latter criticism.

More importantly, from the perspective of the current paper, it is unclear
how such constraint-based models, will scale into a full model of sentence
processing.3 Furthermore, the competition mechanism predicts that local
ambiguities in which competing analyses have similar activations (nee prob-
abilities) will take longer to resolve. While this has been demonstrated to
provide an interesting fit of human reading times for reduced relative clauses
(McRae et al.,1998) and several other constructions (Tanenhaus et al.,2000),
it is unclear whether this prediction is sustained for language processing, in
general. A true probabilistic model, in contrast, makes no such prediction: the
probability of analyses simply determines the ranking of interpretations at each
point during processing of the utterance.

Jurafsky (1996) presents a computational model of lexical access and syn-
tactic disambiguation, which is truly probabilistic. The model associates prob-
abilities with various linguistic representations, including phrase structure rules
and lexical valence (i.e., subcategorization). When utterances are processed,
the probability of alternative structures is computed by combining the proba-
bilities of the contributing rules and lexical entries, which are utilized in each
analysis. Alternative analyses are then ranked according to their probability
and those structures below a given threshold are eliminated, thus enforcing
memory constraints. From a theoretical perspective, the model Jurafsky pro-
poses is very much in the spirit of the approach we develop in this paper and
demonstrates the success of probabilistic mechanisms in providing principled,
unified, and predictive accounts for a range of psycholinguistic phenomena.

As with other psycholinguistic models, however, the coverage and scal-
ability of Jurafsky’s model remains unclear and certainly unproved. Indeed, to
our knowledge, the only broad-coverage model of sentence processing is that
of Corley and Crocker (2000). They present a model of human lexical cate-
gory disambiguation that is based on a probabilistic hidden Markov model.
Such models have been shown, in the general case, to be extremely accurate
(Brants, 2000), while Corley and Crocker also demonstrate that such a model
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can explain a range of results concerning human processing of category-
ambiguous words. This present work builds directly on their approach, but
extends it beyond category disambiguation to full syntactic parsing.

CASCADED MARKOV MODELS

The basic idea of cascaded Markov models is to construct the parse
tree layer by layer, first structures of depth one, then structures of depth
two, and so forth. For each layer, a Markov model determines the best set
of phrases. These phrases are used as input for the next layer, which adds
one more layer. Phrase hypotheses at each layer are generated according to
stochastic context-free grammar rules (the outputs of the Markov model)
and subsequently filtered from left to right by Markov models.

Figure 1 gives an overview of the parsing model by showing the pro-
cessing steps for a simple example sentence taken from the Wall Street
Journal corpus (Marcus, Santorini and Marcinkiewicz, 1993). A cascaded
Markov model consists of a stochastic context-free grammar and a separate
Markov model for each layer (up to some maximum number of layers). The
first layer resolves lexical category ambiguities by tagging each word with
its most likely part-of-speech. New phrases are created at higher layers and
filtered by Markov models operating from left to right. Only those hypothe-
ses reaching a particular probability value are passed up to the next higher
layer; the others are pruned.

Fig. 1. The layered processing model. Starting with part-of-speech tagging (layer 0), possibly
ambiguous output together with probabilities is passed to higher layers (only the best hypotheses
are shown for clarity). At each layer, new phrases are added and filtered with a Markov model.
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The Part-of-Speech Layer

For part-of-speech disambiguation, we use the hidden Markov model
approach as implemented by Brants (2000). This layer is largely similar to the
psychological model proposed by Corley and Crocker (2000). This approach
first retrieves, for each word, the allowed tags and their lexical probabilities
from a lexicon.4 It then selects the best sequence of tags by taking additionally
contextual probabilities into account. Figure 2 shows all allowed tags for the
example sentence and the negative logarithm of their γ probabilities. These
result from the combination of lexical probabilities P(word | tag) and con-
textual probabilities P(tag3 | tag1tag2) [a second-order Markov model, while
Corley and Crocker use a first order model: P(tag2 | tag1)]. Calculation of γ (or
forward–backward) probabilities is described in (Rabiner, 1989). The sequence
of part-of-speech tags with the highest probability is shaded gray in Figure 2.

Passing Hypotheses to the Next Layer

After having processed a layer, the best hypotheses and alternatives
with high probabilities are passed to the next layer. Those alternative tags are
shaded light gray in Figure 2. We employ a beam of 100, i.e., a tag is passed
if its probability is at least 100th of the best tag’s probability. This factor of
100 is equivalent to a difference of 2 in the negative logarithms. All tags
having a value, which is, at most, 2 larger than the best one, are passed and
therefore shaded light gray. All tags with a white background are ruled out
at the part-of-speech layer.

Passing more than one hypothesis is advantageous in case a lower-
layer model introduces an error. We increase the chance that the correct tag
is among those that are passed. The higher-level model identifies the alter-
natives and their probabilities and can choose among them. We decide
against passing only one hypothesis to the next layer because this would
make it impossible for higher layers to correct errors introduced at lower

Fig. 2. The part-of-speech layer. For each word, the possible tags and their γ probabilities (negative
logarithm: thus smaller values correspond to higher probabilities) are shown. For statistical part-of-
speech tagging, this represents a lattice and the task is to find the optimal path from nodes 0 to 7.

4 If a word is not found in the lexicon, the tagger generates a probability distribution over all
tags according to a statistical suffix analysis.
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layers. We also decide against passing all hypotheses, because we want to
keep parallelism in the model as low as possible. The empirically deter-
mined value of 100 results in an average of 1.3 tags per word passed to the
first structural layer.

Generating Phrases According to a Context-Free Grammar

After having selected part-of-speech tags with high probabilities, the
model consults a stochastic context-free grammar and adds new phrases to
the hypothesis space. The phrase hypotheses at layer 1, for the example sen-
tence, are shown in Figure 3. Those elements that are passed from the lower
layer have a bold frame, all others are added according to the grammar. Very
typical for a stochastic context-free grammar, the number of hypotheses can
become quite large. This part is identical to filling the chart in context-free
parsing. We just restrict the generation of new phrases to one layer.

Tagging Lattices

The hypotheses for layer 1 form a lattice, with the word boundaries
being states and the phrases being edges. Selecting the best hypotheses means
to find the best path from node 0 to the last node (node 7, in the example).
The best path can be efficiently found with the Viterbi (1967) algorithm,
which runs in time linear to the length of the word sequence. Having this
view of finding the best hypothesis, processing of a layer is similar to word-
lattice processing in speech recognition (cf. Samuelsson, 1997).

Two types of probabilities are important when searching for the best
path in a lattice. First, these are probabilities of the hypotheses (phrases) gen-
erating the underlying terminal nodes (words). They are calculated according
to a stochastic context-free grammar. The second type are context probabil-
ities, i.e., the probability that some type of phrase follows or precedes
another. The two types of probabilities coincide with lexical and contextual
probabilities of a Markov model, respectively. According to a trigram model
(generated from a corpus), the path in Figure 3 that is shaded dark grey is
the best path in the lattice. Its probability is calculated as follows:5

Pbest = P(NP | start)z P(NP ⇒ * The company also)
z P(VBD | NP, ADVP) z P(VBD ⇒ * adopted)
z P(NP | ADVP, VBD)z P(NP ⇒ * an anti-takeover plan)
z P(end | VBD, NP)

5 Note that this layer incorrectly prefers to attach the adverb to the NP. However, the correct
analysis is among those with high probabilities, and will be preferred at the higher layer.
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Fig. 3. Phrase hypotheses and their probabilities (negative logarithm) at layer 1. As for the part-of-
speech layer, the task of the Markov model is to find the optimal path from nodes 0 to 7. Elements
with a bold frame were passed from layer 0. The gray elements (11 of 68) have high probabilities
and are passed to layer 2; the best path is dark gray.

The best path correctly predicts the two NPs and the ADVP. For each
phrase, the γ probability (negative logarithm) is given in Figure 3. All
hypotheses that are within the pre-defined beam of factor 100 are collected
and passed to layer 2. In this example, we find an average of 2.7 passed
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hypotheses in parallel (opposed to 14.6 before filtering).6 The presented
Markov models act as filters. The probability of a connected structure is deter-
mined only based on a stochastic context-free grammar. The joint probabil-
ities of unconnected partial structures are determined by using Markov
models, in addition. While building the structure bottom up, parses that are
unlikely, according to the Markov models, are pruned.

A modified Viterbi algorithm is used to process Markov models oper-
ating on lattices. In part-of-speech tagging, each hypothesis (a tag) spans
exactly one word. Now, a hypothesis can span an arbitrary number of words
and the same span can be covered by an arbitrary number of alternative word
or phrase hypotheses. Using terms of a Markov model, a state is allowed to
emit a context-free partial parse tree,starting with the represented nonter-
minal symbol, yielding part of the sequence of words. This is in contrast to
standard Markov Models. There, states emit atomic symbols. Note that an
edge in the lattice is represented by a state in the corresponding Markov
model.

Figure 4 shows the part of the Markov model that represents the best
path in the lattice of Figure 3. Details of calculating the best path and γ prob-
abilities for each element are described in Brants (1999b; 2000).

Generating, Filtering, Passing

In the example, layer 1 contains 68 hypotheses and passes those 11 ele-
ments with high probabilities (shaded gray in Fig. 3) to layer 2. There again,
new phrases are generated according to the stochastic grammar, filtered with
a Markov model, passed to layer 3, etc. The process iterates either until a sin-
gle highly ranked phrase spans the entire input or until some predefined top-
most layer is reached. In the latter case, the best path represents the resulting
partial parse. Proceeding with the example sentence, layer 2 would generate
161 phrase hypotheses, of which 15 are passed to layer 3. There, 70 new
phrases are generated, of which 10 are passed to layer 4. Since one of them
(an Snode) spans the entire input, and has high probability, the process stops
and emits the structure, as shown in Figure 1.

Incremental Cascaded Markov Models

For our investigations, cascaded Markov models are set up to run incre-
mentally. After reading each word, hypotheses are generated at the different

6 These are averages per word. There are 10 hypotheses on top of The,of which 3 are passed,
15 on top of companyof which 3 are passed, etc.
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layers and subsequently filtered. The original algorithm processed and fin-
ished each layer before proceeding to a higher layer. Incremental processing
and filtering is a harder task since no right context is inspected. Instead, the
process must hypothesize about future input.

For the incremental variant, we need to make two additional decisions:
whether to filter active edges, in addition to inactive edges, and whether we
should build hypotheses on inactive edges or not.

A chart-parsing process generates two types of chart entries: inactive
edges, which represent complete hypothesised constituents, and active edges,
which represent prefixes of hypothetical constituents. We concentrated on
filtering inactive edges (recognized constituents) in the nonincremental ver-
sion of our model. This was appropriate since we knew the entire input and
could immediately generate all inactive edges. Now, in the incremental ver-
sion, it may be advantageous to filter out some of the active edges before
proceeding to the next word. This reduces memory and processing load
since some of the prefixes are dynamically eliminated and need no further
inspection. For our investigation, we decided to filter both active and inactive
edges.

Active edges represent hypothetical constituents, which may be com-
pleted by future input. Should a higher layer already start to build new
hypotheses on top of this incomplete constituent or should it wait until the
lower layer constituent is completed? We chose the former, immediately
starting the higher layer process. This makes processing faster since our
model inherently views the different layers as parallel processes.

Fig. 4. Part of the Markov models for layer 1 that is used to process the sentence of Figure 3. Contrary
to part-of-speech tagging, outputs of states may consist of structures with probabilities according to a
stochastic context-free grammar.
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Parameter Estimation

A big advantage of cascaded Markov models is that they are entirely
trained on corpus data. This ensures wide coverage and robustness. Transi-
tional parameters for cascaded Markov models are estimated separately for
each layer. Output parameters are the same for all layers, they are taken from
the stochastic context-free grammar that is read off the treebank.

Training on annotated data is straightforward. First, we number the lay-
ers, starting with 0 for the part-of-speech layer. Subsequently, reformation
for the different layers is collected.

Each sentence in the corpus represents one training sequence for each
layer. This sequence consists of the tags or phrases at that layer. If a span
is not covered by a phrase at a particular layer, we take the elements of the
highest layer below the actual layer. Figure 5 shows the training sequences
for layers 0–3, generated from the structure in Figure 1. Each sentence gives
rise to one training sequence for each layer. Contextual parameter estima-
tion is done in analogy to models for part-of-speech tagging and the same
smoothing techniques can be applied. We use a linear interpolation of uni,
bi-, and trigram models.

A stochastic context-free grammar is read directly off the corpus. The
rules derived from the annotated sentence in Figure 1 are also shown in
Figure 5. The grammar is used to estimate output parameters for all Markov
models, i.e., they are the same for all layers. We could estimate probabilities
for rules separately for each layer, but this would worsen the sparse data
problem.

Fig. 5. Training material generated from the sentence in Figure 1 (right). The sequences for layers 0–3
are used to estimate transition probabilities for the corresponding Markov models. The context-free
rules are used to estimate the SCFG, which determines the output probabilities of the Markov models.
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MODELLING HUMAN PARSING AND REANALYSIS

Cascaded Markov models are part of a growing family of probabilistic
parsing techniques developed primarily for the task of accurately and robustly
find the most likely parse for naturally occurring, garden-variety, language
(often defined more concretely with respect to exemplary corpora). While such
probabilistic parsers, including the ICMM, are far from perfect, we suggest
they provide the best available approach for robustly and accurately dealing
with linguistic complexity, ambiguity, and noise (such as mild ungrammatical-
ities, slips of the tongue, etc.). As such, we claim that models like ICMM
provide a plausible, if crude, first approximation of general human linguis-
tic performance.

In this section we demonstrate that, in addition to obtaining good over-
all performance, the ICMM also successfully explains human behavior in sev-
eral well-studied locally ambiguous constructions. As our claims concerning
the psychological reality of the ICMM are focused on it’s probabilistic dis-
ambiguation mechanism,7 we focus here on modeling experimental results,
which have explicitly manipulated likelihood. It is important to note that the
following simulations are generated by the ICMM as trained on the Wall
Street Journal portion of the Penn Treebank (Marcus et al., 1993), and that
the model has not been “tuned” in any way for these examples.8

Lexical Category Ambiguity

As Crocker and Corley (in press) point out, lexical category ambigu-
ity is a significant, and frequent, problem for human language process-
ing. Their study of the Brown corpus revealed that 10.9% of word typesand
65.8% of word tokens,are category ambiguous in English. For example,
words that are ambiguous between noun and verb readings are very com-
mon in English. Frazier and Rayner (1987) and MacDonald (1993) both
exploited this observation in experiments which investigated noun–verb ambi-
guities in sentences of the following sort:

(1a) The warehouse firesV many workers in the Spring.
(1b) The warehouse firesN are difficult to control.

7 That is to say, we do not make particular psychological claims concerning the underlying
incremental chart parsing algorithm, for example. The only crucial property of the parser,
w.r.t the probabilistic mechanism, is that it incrementally constructs all analyses at each point
in processing (where most will be immediately pruned).

8 It was necessary to use the Wall Street Journal section, instead of the more balanced Brown
corpus, since only the former made available the necessary subcategory information.
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Results of these studies were taken as support for a delay strategy and an
interactive constraint-based view, respectively. However, neither study con-
trolled for the frequency bias of the ambiguous word. In contrast, probabilis-
tic models of category disambiguation (Corley & Crocker, 2000), the parsing
models of Jurafsky (1996), and the model developed here, predict that lexical
frequency information will be fundamental in resolving such ambiguities.
Experimental findings of Crocker and Corley (in press) demonstrate that, as
predicted, the category frequency bias of the ambiguous word is a fundamen-
tal determinant of how local ambiguity is initially resolved. In particular, they
find that reading times in the disambiguating region immediately following an
ambiguous, but noun-biased, item, like fires,are significantly higher when the
continuation forces a verb interpretation than when it is consistent with the
noun interpretation. A corresponding effect is observed when verb-biased
items are noun disambiguated. Their findings indicate that, all other things
being equal, the human sentence processor will initially prefer analyses, which
associate an ambiguous word with its most frequently observed category.

Given that the present model incorporates a nearly identical mechanism
for lexical category disambiguation to the hidden Markov model of Corley
and Crocker (2000), it should not be surprising that the ICMM similarly
accounts for the experimental findings. For reasons of space, we therefore
only exemplify, in Figure 6, the behavior of the parser for a sentence con-
taining noun-biased word, namely fires, which is subsequently disambiguated
as a verb. As shown in the graph,9 the ICCM predicts an increased reading
time due to reanalysis when the disambiguating region (beginning with
many. . .) is processed. The parser exhibits a corresponding pattern of behav-

Fig. 6. Parse probabilities for a noun-biased item, where the continuation forces verbal reading.

9 The probabilities shown in the graphs have been re-normalized to sum to one, so that the rel-
ative probability of the two analyses can be seen more clearly.



ior when verb-biased items are subsequently disambiguated as nouns. The
behavior of the system is, therefore, consistent with the findings of Crocker
and Corley.

The ICMM similarly models the effect of immediately preceding con-
text in biasing the most likely category, as demonstrated in the experiments
of Juliano and Tanenhaus (1993). In particular, they show that the preferred
category assignment for the ambiguous word that, is as a determiner, when
it occurs in the sentence initially and as a complementizer when it appears
postverbally, as illustrated in the following sentences:

(2a) The lawyer insisted thatComp experienced diplomats would be very
helpful.

(2b) ThatDet experienced diplomat would be very helplul to the lawyer.

For reasons of space, we do not elaborate here on precisely how the
ICMM simulates the findings of Juliano and Tanenhaus (1993). Rather, the
reader is referred to Corley and Crocker (2000) for a detailed explanation,
which also holds for the system described here.

Reduced Relatives

Garden-path effects in reduced relative clauses have long been taken as
strong support for the importance of purely syntactic disambiguation strate-
gies (see e.g., Ferreira & Clifton, 1986, and references cited therein). A num-
ber of recent studies, however, have convincingly demonstrated the important
role of other linguistic knowledge, such as lexical, lexico-syntactic, the-
matic, and discourse factors, in resolving such ambiguities (see e.g., Merlo
& Stevenson, 2000; Altmann & Steedman, 1988; McRae et al. 1988;
Tanenhaus et al. 2000). MacDonald (1994), for example, demonstrated that
the transitivity preference of the ambiguous verb, combined with the cue pro-
vided by a following prepositional phrase following the verb, conspire to
facilitate the necessary reanalysis to the reduced relative clause interpretation.

Because of the sparseness of data for the precise materials used by
MacDonald, we use slightly different items in the present simulation of
MacDonald’s findings. In particular, we consider the sentences shown in
(3), where (3a) corresponds with MacDonald’s transitively biased items,
while (3b) is used to represent the instransitively biased materials.

(3a) The man heldTrans at the station was arrested.
(3b) The man racedIntrans to the station was arrested.

The simulation shown in Figure 7, illustrates how, for the transitive items
like (3a), the parser is able to immediately switch to the correct reduced rela-
tive analysis as soon as the prepositon following the ambiguous verb is
processed. This results from the low probability given to the alternative, main
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clause reading, since the verb would need to be interpreted with its lower
probability intransitive frame. Figure 8, in contrast, shows that for intransitive
items like (3b), the prepositional phrase provides no such cue. The intransitive
VP of the main clause analysis is consistent with the verbs preferred usage.

In related work, McRae et al. (1998) argue for a fully constraint-based
model of sentence processing, in which all relevant linguistic constraints
are immediately recruited to resolve ambiguity. Specifically, he uses the
competition-integration model (Spivey-Knowlton, 1996) to fit off-line biases
for several linguistic constraints to reading times for reduced relative-clause
sentences, such as those in example (4).

(4a) The crook arrested by the detective was guilty of taking bribes.
(4b) The cop arrested by the detective was guilty of taking bribes.

Fig. 7. Parse probabilities or the reduced relative ambiguity for a transitive-biased verb like held.

Fig. 8. Parse probabilities of the reduced relative ambiguity for an intransitive-biased verb like raced.



For present discussion let us consider only those four constraints, which
are postulated to come into play when the ambiguous verb is encountered:

1. Main clause bias:the overall bias to build a MC over RR due to its
higher frequency

2. Verb-tense/voice bias:the lexical frequency bias of the verb to be
used in either the simple past or past-participle form

3. by-bias: the support for building a RR which result from the
parafoveally observed by-phrase

4. Thematic fit:the support for MC contributed by good agents versus
support for RR contributed by poor agents

McRae et al.argue that a constraint-based model (as approximated using
the competition-integration model with all relevant constraints immediately
available) provides a better fit of on-line processing than a modular, garden-
path model (which is implemented by delaying all but the first constraint
in the list above). It is interesting to note, however, that the present model
can also be viewed as modular, in that no postsyntactic constraints are made
available during the initial stages of parsing. In contrast with the garden-
path model, however, the ICMM does make use of both lexical and syntac-
tic probabilities. Indeed this observation highlights the fact that probabilistic
mechanisms are equally consistent with both modular and interactive archi-
tectures. The ICMM, therefore, effectively includes both the first and second
constraint above, as well as the transitivity bias of the verb (which McRae
et al. omit). Furthermore, while the preposition is not modeled parafoveally
(the third constraint above), the simulation in Figure 7 demonstrates clearly
how the information supplied by the preposition is used immediately to
revise the probabilities of the alternatives. We would, therefore, expect
probalistic, but nonetheless modular, models like the ICMM to fit the on-
line reading data of McRae et al. better than their “garden-path” model. It
is also important to note that while McRae et al. set the “off-line” parame-
ters individually, the ICMM learns all parameters via a uniform, automatic,
and mathematically well-founded training procedure. Furthermore, there is
no separate “fitting” of weights for the individual constraints. As a result,
such truly probabilistic models make stronger and clearer predictions and,
more importantly, do so in a model of processing that actually explains
how probabilistic mechanisms are used in building and ranking alternative
interpretations.

NP-S Complement Ambiguity

In the final simulation, we consider evidence that has recently been
used to argue against likelihood-based approaches. The NP/S complement
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ambiguity arises when a verb’s subcategorization requirements can be ful-
filled by both NP or bare S complements. As illustrated in example (5), at
the point of processing an NP, immediately following an ambiguous NP/
S-complement verb, comprehenders must decide whether to interpret the NP
as a direct object or embedded subject.

(5a) The athlete realized [NP his goals] at the Olympics
(5b) The athlete realized [S[NP his goals] were out of reach]

Probabilistic ambiguity resolution mechanisms naturally predict that a
primary determinant of the preferred structure will be the subcategorization
bias of the verb (see e.g., Garnsey et al., 1997). Recent experiments by
Pickering et al., 2000), however, provide convincing evidence that people
initially attempt the direct object attachment for such ambiguities, even for
S-biased verbs. As they point out, their result stands in direct opposition to
the predictions of a strict likelihood model (i.e. models in which likelihood
estimates correspond to the most preferred structures).

While the present model is likelihood based, the calculation of proba-
bilities for a particular (partial) analysis, is not based upon the frequency
with which that analysishas been seen before. Rather, the probability of an
analysis is (imperfectly) approximatedby computing the product of the
probabilities of the individual rules used in the analysis, as made clear ear-
lier. As a result, the S-complement, analysis, which requires an additional
phrase structure rule to complete the attachment, will tend to have a lower
probability than the direct-object analysis. This occurs despite the fact that
the verb’s subcategorization bias of the verb will favor the appropriate VP rule
(i.e.,VP → S, in this case). While this method of calculating probabilities
might be criticized for not assigning sufficiently accurate likelihoods to par-
ticular structures, it can be thought of as implementing a preference for “sim-
pler” structures.

Figure 9 shows the probabilities assigned by the parser to the compet-
ing analyses during processing. As we can see, the verb is initially attached
with its more likely S-complement subcategorization frame. However, as
soon as it is followed by the (left frontier of) a noun phrase, it assigns a
higher probability to the competing (and simpler) direct-object analysis.
This is sustained until the disambiguating region, when the S-complement
analysis is then reassigned a higher probability. The ICMM, therefore, pre-
dicts a preference for initially attaching the NP as a direct object, despite
the S-complement bias of the verb.

The parser’s behavior is thus largely consistent with the findings of
Pickering et al. which demonstrated an increased reading time effect on the
postverbal NP, when it was an implausible direct object (suggesting readers
initially attempt and interpret it as a direct object and must immediately rean-
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alyze). In conditions where the direct object reading was plausible, they
found and increased reading time in the disambiguating region, which the
parser predicts as a result of switching the from the previously favored
direct-object analysis to the now unambiguous S-complement analysis. It
could be argued that the ICMM also acts a reanalysis effect at the beginning
of the ambiguous NP (when the preference switches from S to NP comple-
ment). However, we would expect any such effect to very small, since it
only entails reranking of the verbs subcategorization preference, and not any
structural reanalysis. Pickering et al. found no evidence of such an effect.

DISCUSSION

This paper has presented a probabilistic model of parsing that is designed
to achieve good performance on general language processing, while also
explaining a number of pathological behaviors in processing local ambigui-
ties. Our claims regarding the psycholinguistic plausibility of the presented
models are primarily restricted to the probabilistic disambiguation mecha-
nism, in which alternative analyses are ranked by the parser according to their
estimated likelihood, with low probability analyses being discarded. For full
discussion of general performance, the reader is referred to related work by
Brants and Crocker (2000). Summarized briefly, Brants and Crocker present
detailed results showing that the enforcement of strict incremental processing,
combined with substantial pruning of low probability structures, has virtually
no adverse effect on the accuracy of an SCFG-based parser, similar to the one
presented here. In addition to being able to reduce the memory requirements
to 1% of the total search space, the enforcement of memory restrictions also

Fig. 9. Parse probabilities of the NP/S ambiguity for an S-biased verb.



leads to a reduction in the average parse time by up to two orders of magni-
tude. In addition to showing the sustained accuracy of incremental, resource-
bound probabilistic parsers, their result is important in countering the possible
criticism that probabilistic parsers are too powerful and resource intensive to
be considered as the basis of a cognitively plausible model.

Constraints imposed by our desire to build a broad-overage model of
sentence processing (i.e., one that can be trained on, and tested against,
available parsed corpora of naturally occurring language), entail a proba-
bilistic model, which is easily considered naive in several respects. The lex-
icon contains only words and their possible syntactic category (and associated
probabilities). The grammar, which is determined directly from the trees in
the parsed treebank corpus, also reflects the aims of practical linguistic cov-
erage over fidelity to any sophisticated linguistic theory. The present work
should therefore be seen as complementary to the work of Jurafsky (1996):
where Jurafsky gives up broad-coverage implementability in favor of a richer,
more psychologically likely account, we trade-off in the opposite direction.
However, we suggest that even our less sophisticated probabilistic model pro-
vides a compelling explanation for a range of observed human processing
phenomena.

As we point out, there are number of interesting points that emerge in
comparing our probabilistic model of syntactic processing, with constraint-
based models that also exploit probabilistic constraints. We suggest that our
approach is methodologically superior on several grounds. ICMM relates
the probabilistic mechanism directly to the representation building processes
of the parser and always manipulates true probabilities, rather than convert-
ing them to activations that subsequently lose any transparent probabilistic
interpretation. Furthermore, we have a clearly defined and uniform training
procedure that determines all the parameters of the model similarly. This
means the combination of these probilities in determining the probability of
a particular analysis also has a clear and well-defined probabilistic interpre-
tation. Equally, no separate fitting of “constraint weights” is needed, thereby
eliminating the possibility of fitting the model to process only a single
construction well. In ICMM, parameters are estimated from large corpora,
as an approximation of human linguistic experience, and the same parame-
ter values are used in processing all utterance types. One area in which the
competition-integration model is superior, is that it makes relatively clear
(and, therefore, potentially falsifiable) predictions about actual observed
reading times, while probabilistic models only give a ranking. A mapping
function from probabilistic parser behavior to reading times remains an
interesting and open area of inquiry.

We should also be clear that there is still much scope for research into
the precise nature of the probabilistic human sentence processor. Our simu-
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lation of the NP/S complement ambiguity perhaps best exemplifies this. We
noted that the ICMM accounts for observed behavior because of its bias
toward simpler structures in estimating probabilities. Models that condition
probabilities on richer lexical and structural contexts might no longer
exhibit this preference directly and thus require an additional mechanism to
explain the findings. Pickering et al. (2000) argue in favor of a probabilis-
tic model, which combines traditional likelihood with a measure called
specificityto explain these findings. The measure they derive is argued for
on the grounds that it actually leads to a more optimal decision strategy than
likelihood alone, under certain assumptions about the architecture of the
human sentence processor (see also Chater, Crocker, & Pickering 1998)). In
conclusion, we see further investigation and refinement of probabilistic
models of human sentence processing as an enterprise, which we must seek
to, and offers the best opportunity to, explain both the generally high standard
of human linguistic performance, as well as specific pathological garden-
path phenomena.
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