
Developing a Minimalist Parser for Free Word
Order Languages with Discontinuous

Constituency

Asad B. Sayeed and Stan Szpakowicz

School of Information Technology and Engineering
University of Ottawa, 800 King Edward Avenue

Ottawa, Ontario, Canada K1N 6N5
{asayeed@mbl.ca,szpak@site.uottawa.ca}

Abstract. We propose a parser based on ideas from the Minimalist Pro-
gramme. The parser supports free word order languages and simulates
a human listener who necessarily begins sentence analysis before all the
words in the sentence have become available. We first sketch the prob-
lems that free word order languages pose. Next we discuss an existing
framework for minimalist parsing, and show how it is difficult to make
it work for free word order languages and simulate realistic syntactic
conditions. We briefly describe a formalism and a parsing algorithm that
elegantly overcome these difficulties, and we illustrate them with detailed
examples from Latin, a language whose word order freedom causes it to
exhibit seemingly difficult discontinuous noun phrase situations.

1 Introduction

The Minimalist Programme as described by Chomsky and others [Uriagereka,
1998] seeks to provide an explanation for the existence of the capacity of language
in humans. Syntax merits particular attention in this programme, as it is syntax
that mediates the interactions between the requirements of articulation and those
of meaning. Minimalism characterizes syntax as the simplest possible mapping
between semantics and phonology. It seeks to define the terms of simplicity and
determine the structures and processes required to satisfy these terms.

That the object of investigation is syntax suggests that it is possible to ex-
tract a formal and computable model of syntactic processes from minimalist
investigations. Doubly so, as the concept of economy in minimalism can be said
to correspond to computational complexity.

In this paper, we look at the problem of developing a minimalist account of
parsing. We turn our attention in particular to free word order phenomena in
Latin and to simulating a realistic human parser given that people do not have a
complete sentence before they begin processing. We first give background on free
word order phenomena and on minimalist parsing. Next we discuss a formalism
that performs free word order parsing in such a realistic manner. We show two
complete parses of representative sentences to demonstrate the algorithm, one



of which is a case of discontinuous constituency, a special challenge for parsing
languages such as Latin.

2 Background

2.1 Latin and Free Word Order

Principle-based parsing of free word order languages has been considered for a
long time—see, for example, Kashket [1991]—but not much in the context of
the Minimalist Programme. We propose a minimalist parser and illustrate its
operation with Latin, a language that exhibits high word order freedom. For
example,

pater

father-Nom

laetus

happy-Nom

amat

loves-3Sg

filium

son-Acc

laetum

happy-Acc

‘The happy father loves the happy son.’

For a simple sentence such as this, in theory all 5! = 120 permutations should be
grammatical. We briefly discuss in section 4 whether this is really the case. This
is not true of Latin sentences in which function words must be fixed in place.

It is often remarked that these word orders, though semantically equivalent,
differ in pragmatic import (focus, topic, emphasis, and so on). Existing elab-
orate accounts of contextual effects on Latin word order [Pinkster, 1990] are
rarely sufficiently formal for parser development, and do not help a parser de-
signed to extract information from a single sentence out of context. It should
still be possible to extract the propositional content without having to refer to
the context; hence, we need an algorithm that will parse all 120 orders as though
there were no real differences between any of them. After all, people can extract
information from sentences out of context.

2.2 Derivational Minimalism

Stabler [1997] defines a minimalist grammar as G = (V,Cat, Lex, F ). V is a set
of “non-syntactic features” (phonetic and semantic representations), Cat is a
set of “syntactic features,” Lex is the lexicon (“a set of expressions built from
V and Cat”), and F is “a set of partial functions from tuples of expressions to
expressions”—that is, structure-building operations such as move and merge.
merge, a binary operation, composes words and trees into trees. move removes
and reattaches subtrees; these manipulations are performed in order to check fea-
tures. Checking ensures, among other things, that words receive required com-
plements. Stabler characterizes checking as the cancellation of corresponding
syntactic features on the participant lexical items, but requires that features be
checked in a fixed order.

Stabler [2001] proposes a minimalist recognizer that uses a CKY-like algo-
rithm to determine membership in L(G). Limiting access to features to a partic-
ular order may not work for free word order languages, where words can often



appear in any order. Either duplicate lexical entires must proliferate to handle all
cases, or Stabler’s specification requirements of lexical entries must be relaxed.
We choose the latter path.

Stabler’s CKY inference rules do not themselves directly specify the order in
which items are to be merged and moved into tree structures. This apparent
nondeterminism is less significant if the feature order is fixed. Since we pro-
pose a relaxation of the ordering constraint for free word order languages, the
nondeterminism will necessarily be amplified.

This dovetails with a practical goal. In free word order languages, semanti-
cally connected words can appear far apart in a sentence. In pater amat filium
laetum laetus, pater and laetus must be merged at some point in a noun-adjective
relationship. But pater is the subject of amat. In order to simulate a human lis-
tener, the parser would have to merge pater and amat first, despite that pater
and laetus form one NP; the human listener would hear and make the connection
between pater and amat first.

Consequently, we propose a parser that simulates a human listener by limiting
at each step in a derivation what words are accessible to (“have been heard
by”) the parser and by defining the precedence of the operators in a way that
fully extracts the syntactic and semantic content of the known words before
receiving further words. We develop a formalism to allow this while providing the
flexibility needed for free word order languages. This formalism, illustrated later
by examples, reflects many of the ideas of Stabler’s formalism, but is otherwise
independent.

3 The Parser

3.1 Lexicalized Grammatical Formalism

We briefly describe enough of the lexicon structure to assist in understanding
the subsequent parsing examples. A lexical entry has the form

α : Γ

α is a word’s phonetic or orthographic representation as required. Γ is a
set of feature structures, henceforth called “feature sets.”1 Γ contains feature
paths, described below. But more fundamental are the feature bundles from
which feature paths are constructed.

Feature bundles are required given the fact that highly inflected languages
often compress several features into a single morpheme. Feature bundles provide

1 There is a third, hidden entity here: the semantic representation of α. We leave it
implied that parsing operations perform semantic composition; the formal specifica-
tion of this is left for future work, but it can be specified in the lambda calculus as
in Niyogi [2001] or via theta roles, and so on. Nevertheless, this paper is ultimately
directed towards laying the syntactic groundwork for the extraction of semantic
content from free word order sentences.



the means to check them simultaneously. A feature bundle is represented as
follows:

β(τ1 : φ1, . . . , τn : φn) : δ, n ≥ 1

β is the feature checking status. It can be unchecked (unch), UNCHECKED (UNCH),
checked (ch), CHECKED (CH), unchecked-adjoin (unch+), checked-adjoin (ch+). When
feature bundles are checked against one another, β can change. The examples
will illustrate the relation between feature checking status symbols during the
checking.

Each τ is a feature type. It can be one of such things as case, gender, number,
and so on. Each φ is a feature value such as Nom (nominative), Sg (singular),
and so on. The correspondence between feature types and features is required
for the unification aspect of the checking operation, again demonstrated in the
examples.

δ is direction. An item ι carrying the feature bundle can only check the
bundle with a bundle on another item to the δ of ι. δ can be left or right, and δ
is omitted when the direction does not matter (a frequent situation in free word
order languages).

A feature path has the form:

π → Γ

π is a feature bundle and Γ is a feature set. A feature path makes Γ inacces-
sible for checking until π has been checked. Γ can be empty, in which case the
→ is not written.

A feature set is simply an unordered list of unique feature paths: {η, . . . }.
These sets allow each η to be checked independently of the others. In our repre-
sentation of lexicon entries, we leave out the braces if there is only one η.

3.2 Data Structures and Operations

A parse (also known as a derivation) consists of a number of steps. Each step is
of the form:

Φ | Ψ

Ψ is the queue of incoming words. It is used to simulate the speaker of a
sentence. The removal of words is restricted to the left end of the queue. A word
is shifted onto the right end of Φ, given conditions described below. Shifting is
equivalent to “hearing” or “reading” the next word of a sentence. Φ is a list,
the processing buffer. It is a list of trees whereon the parser’s operations are
performed. The initial state of a parse has an empty Φ, and the final successful
state has an empty Ψ and a single tree in Φ without any unchecked features. A
parse fails when Ψ is empty, Φ has multiple trees or unchecked feature bundles,
and no operations are possible.



Tree nodes are like lexicon entries, maybe with some features checked. The
form is [α Γ ] if it is the node with word α closest to the root, or α if it is a lower
node. A single node is also a tree.

At each step, the parser can perform one of three operations: move a node
on a tree to a higher position on the same tree, merge two adjacent trees, or
shift a word from the input queue to the processing buffer in the form of a node
with the corresponding features from the lexicon.

merge and move are well known in the minimalist literature, but for parsing
we present them a little differently. Their operation is illustrated in the subse-
quent examples. In this parser, merge finds the first2 two compatible trees from
the processing buffer with roots α and β, and replaces them with a tree with
either α or β as the root and the original trees as subtrees. move finds a position
α in a tree (including the possible future sister of the root node) that commands3

a compatible subtree; the subtree is replaced by a trace at its original position
and merged with the item at its new position. Adjunct movement and specifier
movement are possible. Our examples only show adjunct movement. move acts
on the first tree for which this condition exists.

There are locality conditions for merge and move. For merge, the trees
must be adjacent in the processing buffer. For move, the targeted tree positions
must be the ones as close as possible to the root.

Compatibility is determined by feature checking. It relies on unification and
unifiability tests. Sometimes checking succeeds without changing the checking
status of its participants, because further checking may be required. These as-
pects of checking are also described in the examples.

At every step, move is always considered before merge. This is to minimize
the number of feature-compatible pairs of movement candidates within the trees
in the processing buffer. If no movement is available in any tree, the parser looks
for adjacent candidates to merge, starting from left to right. If neither merge
nor move is possible, a new word is shifted from the input queue.

3.3 Examples of Parsing

Here is the initial lexicon:

pater: unch(case:Nom, num:Sg, gnd:Masc)
filium: unch(case:Acc, num:Sg, gnd:Masc)
amat: {UNCH(case:Nom, num:Sg), UNCH(case:Acc)}
laetus: unch+(case:Nom, num:Sg, gnd:Masc)
laetum: unch+(case:Acc, num:Sg, gnd:Masc)

Inflection in Latin is often ambiguous. More entries for laetum would exist
in a realistic lexicon. As disambiguation is not in the scope of this paper, we
assume that the only entries in the lexicon are those useful for our examples.

2 We scan from the left. Since the trees closer to the left end of Φ tend to have their
features already checked, processing usually affects recently shifted items more.

3 Node ξ commands node ζ if ξ’s sister dominates ζ.



Example #1: pater laetus filium amat laetum. This example illustrates the ba-
sic machinery of the parser, but it also demonstrates how the parser handles the
discontinuous constituency of phrases, in this case noun phrases. filium laetum
(“the happy son”) is split across the verb. We begin with an empty processing
buffer:

| pater laetus filium amat laetum

pater and laetus are shifted into the buffer one by one. They are “heard”; the
lexicon is consulted and the relevant features are attached to them. (For the sake
of brevity, we will combine multiple steps, particularly when a word is heard and
some merge happens immediately as a result.)

[pater unch(case:Nom, num:Sg, gnd:Masc)]
[laetus unch+(case:Nom, num:Sg, gnd:Masc)]
| filium amat laetum

laetus adjoins to pater. There is no unifiability conflict between the features
of both words. If a conflict had occurred, there would be no merge. The lack
of conflict here indicates that the adjunction is valid. Thus, the feature on the
adjective is marked as checked. Since adjunction is optional, and further adjunc-
tions are theoretically possible, the feature on the noun is not checked yet.

([pater unch(case:Nom, num:Sg, gnd:Masc)]
pater
[laetus ch+(case:Nom, num:Sg, gnd:Masc)])

| filium amat laetum

We shift filium into the buffer. filium cannot be absorbed by the pater tree.
So we shift amat. Their nodes look as follows:

[filium unch(case:Acc, num:Sg, gnd:Masc)]
[amat {UNCH(case:Nom, num:Sg), UNCH(case:Acc)}]

Can anything be merged? Yes, filium checks a feature bundle on amat that
was the one looking for another compatible bundle in order to project to the
root of the new tree. When filium’s feature bundle checks with the corresponding
bundle on amat, several things occur:

1. amat’s feature bundle’s status changes from UNCH to CH, and filium’s bundle’s
status changes from unch to ch.

2. amat projects: a new tree is formed with amat and its features at the root.
This is specified in the feature bundle: the capitalized form indicates that
amat is looking for a constituent to fill one of its semantic roles.

3. amat’s feature bundle is unified with that of filium and replaced with the
unification result; in other words, it acquires filium’s gender. filium does
not gain any features, as its bundle is not replaced with the unification
result. Only the projecting item amat is altered, as it now dominates a
tree containing filium as a constituent. The non-projecting item becomes
a subtree, inaccessible for merge at the root and thus not needing to reflect
anything about amat.



Table 1 describes the interactions between feature bundle checking status
types. In all four cases, only the item containing bundle 2 projects and forms
the root of the new tree. A unifiability test occurs in each checking operation, but
replacement with the unification result happens only in the feature checked on
the projecting item (bundle 2) in the first case. No combinations other than these
are valid for checking. The relation only allows us to check unch with UNCH feature
bundles, since UNCH bundles indicate that their bearers project; there must be
exactly one projecting object in any merge or move. unch+ check with CH feature
bundles, because their CH (and feature-compatible) status will have resulted from
a merge with an item that can accept the adjunct in question. unch+ check with
any compatible unch or ch feature bundles, as this indicates that the target of
adjunction has been reached. We consider this analysis of checking relations to
be exhaustive, but we save the rigorous elimination of other combinations for
future work.

Table 1. Checking status interactions.

Bundle 1 Bundle 2 after checking: Bundle 1 Bundle 2 Replace bundle 2
with unif. result?

unch UNCH ch CH Y
unch+ CH unch+ CH N
unch+ unch ch+ unch N
unch+ ch ch+ ch N

Here is the result of the merge of filium and amat (to save space, we omit
the pater tree):

([amat {UNCH(case:Nom, num:Sg),
CH(case:Acc, num:Sg, gnd:Masc)}]

[filium ch(case:Acc, num:Sg, gnd:Masc)]
amat)

| laetum

merge occurs at the roots of trees. It treats each tree as an encapsulated
object and does not search for places within trees to put objects. In more com-
plicated sentences, searching would require more involved criteria to determine
whether a particular attachment is valid. For the sake of minimality, we have
developed a process that does not require such criteria, but only local interaction
at a surface level. In doing so, we preserve our locality requirements.

The only attachments to trees that are valid are those that are advertised
at the root. move within trees takes care of remaining checkable features given
criteria of minimality described above.

Now, pater is adjacent to amat and can thus merge with it, checking the
appropriate bundle.



([amat {CH(case:Nom, num:Sg, gnd:Masc),
CH(case:Acc, num:Sg, gnd:Masc)}]

([pater ch(case:Nom, num:Sg, gnd:Masc)]
pater
[laetus ch+(case:Nom, num:Sg, gnd:Masc)])

(amat
[filium ch(case:Acc, num:Sg, gnd:Masc)]
amat) )

| laetum

In the processing buffer, no more features can be checked. The system needs
to process laetum. It moves in and presents a problem:

[laetum unch+(case:Acc, num:Sg, gnd:Masc)] |

To what can laetum attach? We have defined the merge operation so that it
cannot search inside a tree—it must operate on objects in the buffer. Fortunately,
the rules we have defined allow an item with an adjunct feature bundle to be
merged with another item with a ch projecting feature bundle if both bundles can
be correctly unified. The adjunct feature remains unch until movement causes a
non-projecting non-adjunct feature to be checked with it.
([amat {CH(case:Nom, num:Sg, gnd:Masc),

CH(case:Acc, num:Sg, gnd:Masc)}]
(amat

([pater ch(case:Nom, num:Sg, gnd:Masc)]
pater
[laetus ch+(case:Nom, num:Sg, gnd:Masc)])

(amat
[filium ch(case:Acc, num:Sg, gnd:Masc)]
amat) )

[laetum unch+(case:Acc, num:Sg, gnd:Masc)]) |

The rules for movement seek out the highest two positions on the tree that
can be checked with one another. filium and laetum are precisely that. filium is
copied, checked, and merged with laetum. For the sake of convention, we mark
the original position of filium with a trace (<filium>).

([amat {CH(case:Nom, num:Sg, gnd:Masc),
CH(case:Acc, num:Sg, gnd:Masc)}]

(amat
([pater ch(case:Nom, num:Sg, gnd:Masc)]

pater
[laetus ch+(case:Nom, num:Sg, gnd:Masc)])

(amat
<filium>
amat) )

([filium ch(case:Acc, num:Sg, gnd:Masc)]
filium
[laetum ch+(case:Acc, num:Sg, gnd:Masc)]) ) |

filium dominates because laetum is only an adjunct. All features are now
checked, and the parse is complete.

Example #2: pater laetus a filio laeto amatur. This sentence is in the passive
voice, included to demonstrate the need for feature paths. Passives in Latin are
very similar to passives in English. a filio laeto is similar to an agent by-phrase.
This requires new lexicon entries for all the words except for pater and laetus.
The additional entries:



a: UNCH(case:Abl):right --> unch(by:0)
filio: unch(case:Abl, num:Sg, gnd:Masc)
laeto: unch+(case:Abl, num:Sg, gnd:Masc)
amatur: {UNCH(case:Nom, num:Sg, gnd:Masc), UNCH(by:0)}

The by-feature is similar to Niyogi’s 2001 solution for by-phrases in English.
0 is there as a place-holder, since the by-feature does not have multiple values;
it is either present or absent. We also use 0 to indicate that the feature must be
present in order for the feature bundle to be unifiable with a corresponding UNCH

feature bundle. a is a preposition in Latin with other uses (like by in English);
making it necessarily attach to a verb as the deliverer of an agent requires a
special feature.

The by-feature is the second element along a feature path. Before a can be
merged with a verb, it must first be merged with a complement in the ablative
case. This complement is directionally specified (to the right of a).

Let us begin:

| pater laetus a filio laeto amatur

pater and laetus are each shifted to the processing buffer. They adjoin:

([pater unch(case:Nom, num:Sg, gnd:Masc)]
pater
[laetus ch+(case:Nom, num:Sg, gnd:Masc)])

| a filio laeto amatur

a and filio enter; filio is a noun in the ablative case and can be checked against
a. (We will henceforth omit the pater tree until it becomes necessary.)

([a CH(case:Abl, num:Sg, gnd:Masc):right --> unch(by:0)]
a
[filio ch(case:Abl, num:Sg, gnd:Masc)])

| laeto amatur

filio checks the case feature on a immediately. There will be an adjective that
needs to adjoin to filio, but it has not yet been heard; meanwhile, the system has
a preposition and a noun immediately ready to work with. The mechanism of
unification allows a to advertise the requirements of filio for future adjunction.
There is no reason for the system to wait for an adjective, as it obviously cannot
know about it until it has been heard. The noun does not need an adjective and
only permits one if one is available.

As before, laeto is absorbed and attached to a.

([a CH(case:Abl, num:Sg, gnd:Masc):right --> unch(by:0)]
(a

a
[filio ch(case:Abl, num:Sg, gnd:Masc)])

[laeto unch+(case:Abl, num:Sg, gnd:Masc)])
| amatur

This adjunction occurs because unification and replacement have caused a
to carry the advertisement for a Sg, Masc adjunct in its now-CH feature that
previously only specified ablative case.

move connects filio and laeto, leaving <filio>:



([a CH(case:Abl, num:Sg, gnd:Masc):right --> unch(by:0)]
(a

a
<filio>)

([filio ch(case:Abl, gnd:Masc, num:Sg)]
filio
[laeto ch+(case:Abl, num:Sg, gnd:Masc)]) )

| amatur

The buffer now contains two trees (remember the pater tree). Neither of their
roots have any features that can be checked against one another. amatur is heard:
[amatur {UNCH(case:Nom, num:Sg, gnd:Masc), UNCH(by:0)}] |

The case feature was checked on a, so the by-feature is available for checking
with the verb. Recall that a merge in the processing buffer only occurs between
adjacent elements. In the next step amatur can only merge with a.
([amatur {UNCH(case:Nom, num:Sg, gnd:Masc),

CH(by:0, case:Abl, num:Sg, gnd:Masc)}]
([a CH(case:Abl, num:Sg, gnd:Masc):right --> ch(by:0)]

(a
a
<filio>)

([filio ch(case:Abl, gnd:Masc, num:Sg)]
filio
[laeto ch+(case:Abl, num:Sg, gnd:Masc)]) )

amatur) |

The by-feature on amatur has been unified with all the features on the feature
path of a, required in case the order had been pater laetus amatur a filio laeto.
In that situation, a filio would have been merged with amatur before laeto would
be heard, since laeto is an adjunct. This mechanism ensures that permission for
the attachment of an adjunct to filio is exposed at the root of the tree dominated
by amatur. Here it is not an issue, but the operator covers this possibility.

Merging with pater (which we now reintroduce) is the next and final step:
([amatur {UNCH(case:Nom, num:Sg, gnd:Masc),

CH(by:0, case:Abl, num:Sg, gnd:Masc)}]
([pater unch(case:Nom, num:Sg, gnd:Masc)]

pater
[laetus ch+(case:Nom, num:Sg, gnd:Masc)])

(amatur
([a CH(case:Abl, num:Sg, gnd:Masc):right --> ch(by:0)]

(a
a
<filio>)

([filio ch(case:Abl, gnd:Masc, num:Sg)]
filio
[laeto ch+(case:Abl, num:Sg, gnd:Masc)]) )

amatur) ) |

4 Conclusions and Future Work

Through examples, we have presented an algorithm and formal framework for
the parsing of free word order languages given certain limitations: highly con-
strained operations with strong locality conditions (move and merge), no at-
tempts at simulating nondeterminism (such as lookahead), and a limitation on
the availability of the words in the sentence over time (the input queue simu-
lates a listener processing a sentence as words arrive). Under these limitations,



we demonstrated the algorithm for a sentence with a discontinuous noun phrase
and one in the passive voice.

The precedence of operations serves to connect shifted items semantically as
soon as possible, though we do not fix the semantic representation; whenever
merge and move are performed, we assume that a more complete semantic
representation of the sentence is achieved. We will seek compositional semantic
formalisms that can handle the flexibility of our syntactic formalism.

The algorithm favours move to ensure that all features in the current set
of trees in the processing buffer are exhausted. This precludes multiple pairs of
compatible subtrees, since that can only happen when merge joins a new item
to a tree without exhausting the available movement candidates.

This has the effect of creating a “shortest move condition,” which Stabler
[2001] enforces by only allowing one instance of a pair of compatible features
in a tree. Multiple compatible pairs can only arise when a movement frees a
feature set along a feature path, and the feature bundles in the feature set are
each compatible with different commanded subtrees. The highest commanded
subtree moves first, since it is the first found in a search from the tree root.
This exception is required by the mechanisms we use to handle free word order
languages, which Stabler does not consider. We conjecture that this may only
appear in practice if there are actual adjunct attachment ambiguities.

The locality of merge (adjacent items only) precludes search for every pos-
sible pair of movement candidates on the list. merge’s precedence over shifting
and locality together have the effect of forcing merge of the most recently shifted
items first, since they bring in new unchecked features. (This fits the intuition
that semantic connections are the easiest among the most recently heard items).
Shifting last prevents occurrences of multiple compatible candidates for merging.

We will thoroughly demonstrate these claims in forthcoming work; here, we
trust the reader’s intuition that the definitions of these operations do prevent
most ambiguous syntactic states, barring those caused by attachment or lexical
ambiguities with semantic effect.

Feature paths are used to force checking certain feature bundles in certain
orders, usually so that a word’s complements can be found before it is absorbed
into a tree. Feature sets allow the opposite; free word order languages let most
features be checked in any order. Unification and unifiability tests provide suf-
ficient flexibility for split phrases by allowing dominating nodes to advertise
outstanding requirements of their descendants.

A less general version of this parsing algorithm, written in Prolog and de-
signed specifically for these example sentences, showed that 90 of the 120 per-
mutations of pater laetus amat filium laetum can be parsed. filium laetus laetum
amat pater typifies the remaining 30, in that the adjective laetum cannot be
absorbed by amat, since amat has not yet merged with filium; the 30 all have
similar situations caused by the adjacency condition we impose on merging.
These sentences are a subset of those exhibiting discontinuous constituency.

In a further experiment, we allowed implied subjects (for example, omitting
pater is grammatical in Latin in example #1). This reduced the number of



unparsable sentences to 16. pater was still in all the sentences, but in the 14
that became parsable, laetus and pater were originally obstructed from merging.
We lifted the obstruction by allowing laetus to merge with amat first. Without
implied subjects, laetus acted as an obstacle in the same way as laetum; it ceased
to be an obstacle after we introduced implied subjects.

Though we are able to parse most of the sentences in this constrained environ-
ment (and thus most examples of discontinuous constituency), we are working on
determining how to minimally weaken the contraints or complexify the algorithm
in order to handle the remaining 16 orders. But before deciding how to modify
the system, we need to determine how many of these orders are actually valid
in real Latin, and thus whether modifications to the system are really justified.
We have embarked on a corpus study to determine whether these orders were
actually plausible in classical Latin; a corpus study is necessitated by the lack
of native speakers. We work with material generously provided by the Perseus
Project (http://www.perseus.tufts.edu/).

This paper discusses the parser as an algorithm. In our pilot implementation,
we simulated the checking relations between the Latin words that we used to
experiment with the algorithm. We are now implementing the full parser in SWI
Prolog using Michael Covington’s GULP package to provide the unification logic.
We will also seek a way to convert existing comprehensive lexica into a form
usable by our parser, both for Latin and for other languages.

Work in minimalist generation and parsing has, thus far, mostly stayed within
the limits of theoretical linguistics. A parser with the properties that we propose
would help broaden the scope of the study of minimalist parsing to more realis-
tic, complex linguistic phenomena. It could take this parsing philosophy toward
practical applications. An example is speech analysis, where it would be advan-
tageous to have a parsing algorithm that recognizes the need to make syntactic,
and thus semantic, links as soon as a word enters the system.

References

Michael B. Kashket. Parsing Warlpiri—a free word order challenge. In Robert C.
Berwick, Steven P. Abney, and Carol Tenny, editors, Principle-Based Parsing:
Computation and Psycholinguistics. Kluwer, Dordrecht, 1991.

Sourabh Niyogi. A minimalist interpetation of verb subcategorization. Interna-
tional Workshop on Parsing Technologies (IWPT-2001), 2001.

Harm Pinkster. Latin Syntax and Semantics. Routeledge, New York, 1990.
Translated by Hotze Mulder.

Edward P. Stabler. Derivational minimalism. In C. Rétoré, editor, Logical As-
pects of Computational Linguistics, volume 1328 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 1997.

Edward P. Stabler. Minimalist grammars and recognition. In Christian Rohrer,
Antje Roßdeutscher, and Hans Kamp, editors, Linguistic Form and its Com-
putation. CSLI Publications, Stanford, 2001.

Juan Uriagereka. Rhyme and Reason: An Introduction to Minimalist Syntax.
MIT Press, Cambridge, Mass., 1998.


