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Course type Advanced

Abstract This is an interdisciplinary course intended to bring together students from psycholinguistic
and computational backgrounds and explore the question of world-knowledge in distributional
semantics through lectures on recent published research. Distributional semantics exploits co-
occurrences in corpus data in order to represent semantic knowledge implicitly through statistics
about word context, but the extent to which this can serve as a proxy for semantic grounding in
some form of world-knowledge is still an unresolved question. What we currently understand
and how to think about the boundary between distributionally-represented knowledge and explicit
world-knowledge will be the main topic of the course.
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1 Introduction

This advanced course provides students with the opportunity to learn about an issue of increasing impor-
tance in semantics: the interaction of pragmatic knowledge with distributional representation. Distribu-
tional semantics has become a very successful computational approach to semantic representation, with
applications both in typical end-user natural language processing tasks but also in psycholinguistic mod-
eling. Because of the great progress made in distributional semantics, the field is only barely starting
to become aware of the practical limits of these representations. This course is designed to give stu-
dents the requisite background to be able to understand the issue and ask the requisite questions in their
own research. Our course will present perspectives from computational linguistics, psycholinguistics,
and formal lexical semantics, both foundational and very recent research; our goal is interdisciplinary
breadth with a particular focus on class discussion of fundamental semantics problems in this area.

The intuition behind distributional semantics is the distributional hypothesis (Sahlgren, 2008; Ruben-
stein and Goodenough, 1965): the meaning of a word can be characterized, at least indirectly, by the
company it keeps. The advent of high-performance computing that can efficiently process very large vol-
umes of data and evaluate very large statistical models has meant that this hypothesis can be exploited
in a way that produces large performance gains on language tasks that previously might have required
explicit knowledge (Baroni and Lenci, 2010; Mikolov et al., 2013). The encoding of explicit knowledge,
however, is highly costly as well as fragile to the frequent exceptions that characterize real-world lan-
guage use (Sowa, 1993). Whether or not the distributional hypothesis is “true” in a psychological sense
is immaterial for many applications; it is sufficient that a large body of statistics allows us to characterise
meaning relations between words in a flexible way.

As we describe in the next sections, a growing body of psycholinguistic evidence is showing, how-
ever, that humans do to some extent rely on learned expectations of word contexts to characterize
(in)congruity and (un)expectedness in meaning juxtaposition. If this is so, this leads to an interesting
conundrum: how is semantics—as a layer of human processing—grounded at all in the characteristics
of referenced objects and concepts? Is there any necessary role in semantic representation for the en-
coding of knowledge other than the merely distributional? It may seem obvious to many linguists that
there must be, but the apparent success of distributional approaches even in cognitive modeling raises
the question of the point at which other forms of semantic knowledge regain psychological necessity.

2 World-knowledge in the lexicon

The linguistics literature has attempted to draw boundaries between lexical knowledge (systematic,
amenable to generalization) and world knowledge (situated, culture-dependent), with the former being
considered an approachable object of analysis and the latter feared to elude a systematic characterization
and analysis. The Generative Lexicon (Pustejovsky, 1995) proposed to enrich the lexicon with complex
information (e.g. qualia structure) specifying our ”understanding of an object or a relation in the world”,
in order to account for compositionality and gain in generative power, systematicity and productiv-
ity, while establishing the boundaries and constraints of the lexicon through rich but still concise and
compact representations. An attempt to keep lexical knowledge (activated first) and world knowledge
(activated later in processing) separate has also been made in psycholinguistic research (see Bornkessel
and Schlesewsky, 2006; Warren and McConnell, 2007). The key question remains open, however: can
we place this distinction on a better empirical footing, rather than dismiss the robust computational
characterization of world-knowledge as presently impractical (Jackendoff, 2002; Hobbs, 2009).
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3 Psycholinguistic evidence

Recent work generalized event knowledge (Ferretti et al., 2001; McRae and Matsuki, 2009; Bicknell
et al., 2010), has challenged this architectural distinction, showing that people use rich syntactic, lexical,
semantic, situational and pragmatic information associated with words at each point in processing to
build expectations about upcoming input. Work on Grounded Cognition (Barsalou, 1999; Pecher and
Zwaan, 2005) has argued that multimodal representations (acquired during sensorimotor experience) are
reactivated in the form of simulations during cognitive processes (including language) and should inform
our representations of knowledge and experience. Other studies provide evidence for early activation
of scenario-relevant objects (Metusalem et al., 2012), object-shape Sato et al. (2013) and perceptuo-
motor (Amsel et al., 2015) knowledge early during online language processing, and for integration of
perceptuomotor features during expectation-based processing of visual scenes (Sitnikova et al., 2008).

Building on such experimental results, Elman (2011) wonders to what extent we can just keep enrich-
ing the lexicon with the complex knowledge we associate with words and proposes a ”lexical knowledge
without a lexicon”, moving away from a model of the lexicon in the narrow linguistic sense and towards
rich and context-sensitive lexical knowledge stored in memory as a dynamic system. Capturing rich
lexical knowledge information is a natural challenge for distributional semantic models (e.g. Padó and
Lapata, 2007; Erk, 2010; Lenci, 2012), including, more recently, multimodality and grounded repre-
sentations, for example by exploiting visual information extracted from images to build distributional
and perceptually grounded models of word meaning (e.g. Feng and Lapata, 2010; Bergsma and Goebel,
2011; Bruni et al., 2012). The most recent revisions of the Generative Lexicon (Pustejovsky, 2012, 2013)
also strive to enrich the lexicon by imposing structure on a domain (world knowledge and sensomotory
experience) which was considered too elusive for rigorous analysis. This may encompass more situated,
spatial knowledge, see e.g., the most recent revisions of the Generative Lexicon (Pustejovsky, 2012,
2013), where qualia structures transition into habitats, i.e., frames depicting generalizations about a sit-
uation which arise from world-knowledge and on which compositional process can operate, reaching to
closer to affordances and to perceptual and motor capacities, which the cognitive scientist would hesitate
to call lexical, because it is relevant to other cognitive processes besides language.

4 Computational approaches

Present-day computational approaches to semantics are designed to use large volumes of data to solve
the problem of non-robustness in formal representation. Linguistic intuitions are expected to fall out
implicitly from an automatically-derived, usually vector-based account of corpus collocations. The
quantity of literature on this is now immense and generated constantly in the growing computational
literature, but in addition to some of the works cited above, Wang et al. (2016) and Flanigan et al.
(2016) are two recent examples out of many works published this year alone on using distributional
representations induced via neural networks.

While biologically-inspired “neural” models are the dominant means to construct these representa-
tions, the question remains open: how appropriate are these representations to the task of psycholin-
guistic modeling? Insofar as psycholinguistic models have scientific interest in and of themselves
(e.g., Sorodoc et al., 2016) as well as potential applications in areas such as (increasingly realistic and
consumer-focused) dialogue systems and natural language generation (e.g., Serban et al., 2016), the
boundaries of world-knowledge become increasingly important as an object of semantic study. How far
is it true that words that are distributionally similar across large and representative samples of text are al-
ways semantically similar? (For example, “knife” and “hammer” may be distributionally similar, being
tools, but “knife” and “wire” despite distributional dissimilarity, have real-world features in common,
such as the ability to cut certain objects accurately.) This is the type of conflict which students will be
encouraged to consider in this course.
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Tentative outline

• Day 1: Foundations of representation

– Historical perspective on formal lexical semantics
– Scripts and pragmatic knowledge
– Cognitive foundations of abstract world representation
– Motivation: finding the boundaries between distributional, formal, and pragmatic knowledge

• Day 2: World-knowledge in the lexicon

– Generalized event knowledge (e.g. thematic fit)
– Debates on the contents of the lexicon
– Qualia and habitats

• Day 3: Distributional semantics

– Distributional hypothesis: underlying intuitions
– Corpus-based approaches to building distributional models
– Applications in natural language processing
– Hands-on demo of existing computational models

• Day 4: Representational conflicts in models of the lexicon

– Incongruities between distributional knowledge and world-knowledge in event structure rep-
resentation

– Attributive vs. predicative adjectives and other very abstract semantic distinctions
– Psycholinguistic evidence for distinct processing modalities

• Day 5: Modeling the distinctions

– Multimodal approaches to feature extraction (image processing, etc).
– Unexplored experimental avenues
– Exploitation of human-coded and rule-based processing in distributional contexts
– Student discussion of research directions and open relevant research questions to be formu-

lated in a published list

Prerequisites

This is an advanced but interdisplinary course intended to provoke thought and discussion between
computational linguists and psycholinguists, among others, so the prerequisites cannot be very strict.
Encouraged would be previous training in formal and lexical semantics. Exposure to either psycholin-
guistic experimental methodologies or computational distributional semantics would enhance a student’s
capacity for participation.

Funding

Organizers are presently located within Germany (Saarbrücken). Some travel support may be avail-
able from the Multimodal Computing and Interaction Cluster of Excellence or from the DFG project
SFB1102 Information Density and Linguistic Encoding.
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