#### Word vectors of various kinds

#### Jon Dehdari and Asad Sayeed

December 14, 2016

## Jorge Luis Borges

An Argentinian philosopher and fiction writer. One of his stories mentions 'a certain Chinese Encyclopedia', the *Celestial Emporium* of *Benevolent knowledge*. It contains a classification of animals.

- those that belong to the emperor
- embalmed ones
- those that are trained
- suckling pigs
- mermaids
- fabulous ones
- stray dogs

## Jorge Luis Borges

... actually, it goes on.

- those that are included in the present classification
- those that tremble as if they are mad
- innumerable ones
- those drawn with a very fine camelhair brush
- others
- those that have just broken a flower vase
- those that from a long way off look like flies

#### What words are

So far we've talked about words in order. But words have a relationship to each other.

- We use dictionaries in real life for a reason.
- We need to make fine-grained distinctions, draw connections, and so on.
- Humans make judgements about similarities.
  - You know that "motorcycle" can be used in most, but not all contexts that "car" can be used.
  - English-German bilinguals know that "pride" and "Stolz" are quite similar.

#### Define "chair"

From dictionary.com (just the noun version):

# Define "chair"

From dictionary.com (just the noun version):

- A seat, especially for one person, usually having four legs for support and a rest for the back and often having rests for the arms.
- Something that serves as a chair or supports like a chair: "two men clasped hands to make a chair for their injured companion".
- A position of authority, as of a judge, professor, etc.
- The person occupying a seat of office, especially the chairperson of a meeting: "the speaker addressed the chair"
- (in an orchestra) the position of a player, assigned by rank; desk: "first clarinet chair".
- "the chair", Informal. electric chair.

That doesn't seem very helpful, but it gives us a place to start. Define "chair" in terms of features:

- +one-person, +four-legs, +support, +backrest, +armrest
- +authority
- +occupies-chair
- +orchestra
- +execution

OK, that gives us the definition of a chair in terms of (rather specific) features.

Define the noun "cockpit". Let's go to dictionary.com again. I get as features:

- +enclosed, +airplane, +controls, +panel, +seats
- +instrumentation, +automobile
- +pit, +cockfights
- +conflict

Very little overlaps.

## So can we compare them?

#### Encode features as 1 or 0

|            | chair | cockpit |
|------------|-------|---------|
| one-person | 1     | 0       |
| backrest   | 1     | 0?      |
| four-legs  | 1     | 0       |
| support    | 1     | 0?      |
| armrest    | 1     | 0?      |
| authority  | 1     | 0?      |
| enclosed   | 0     | 1       |
| airplane   | 0     | 1       |
| seats      | 0?    | 1       |
|            |       |         |

• What we've just defined is a vector space.

- What we've just defined is a vector space.
- Dimension = feature. So far it's a low-dimensional space.

- What we've just defined is a vector space.
- Dimension = feature. So far it's a low-dimensional space.
- How can we measure the similarity between them? Common answer: cosine similarity.

- What we've just defined is a vector space.
- Dimension = feature. So far it's a low-dimensional space.
- How can we measure the similarity between them? Common answer: cosine similarity.
- So what would the similarity of "chair" and "cockpit" be in our space? Probably zero!

We need a new data source. Collect it from a real corpus. Let's try Google.

We need a new data source. Collect it from a real corpus. Let's try Google.

|            | chair | cockpit |
|------------|-------|---------|
| one-person |       |         |
| backrest   |       |         |
| four-legs  |       |         |
| support    |       |         |
| armrest    |       |         |
| authority  |       |         |
| enclosed   |       |         |
| airplane   |       |         |
| seats      |       |         |
|            |       |         |

We need a new data source. Collect it from a real corpus. Let's try Google.

|            | chair | cockpit |
|------------|-------|---------|
| one-person |       |         |
| backrest   |       |         |
| four-legs  |       |         |
| support    |       |         |
| armrest    |       |         |
| authority  |       |         |
| enclosed   |       |         |
| airplane   |       |         |
| seats      |       |         |
|            |       |         |

Now it's not so bad: we can get a non-zero similarity. Yay?

• In fact, rather than using dictionary definitions of explicit features, cut out the middle man.

- In fact, rather than using dictionary definitions of explicit features, cut out the middle man.
- "Learn" a vector for each word by counting corpus context. Ways of learning:
  - Simple co-occurrence counts based on a window.
    - The vocabulary basically becomes the feature space.

- In fact, rather than using dictionary definitions of explicit features, cut out the middle man.
- "Learn" a vector for each word by counting corpus context. Ways of learning:
  - Simple co-occurrence counts based on a window.
    - The vocabulary basically becomes the feature space.
  - More complex counts, such as POS tags, bits of parse trees.

- In fact, rather than using dictionary definitions of explicit features, cut out the middle man.
- "Learn" a vector for each word by counting corpus context. Ways of learning:
  - Simple co-occurrence counts based on a window.
    - The vocabulary basically becomes the feature space.
  - More complex counts, such as POS tags, bits of parse trees.
- Sometimes raw counts aren't what you need: smoothing, reweighting.

These are "count" vectors. What are the problems with doing it this way?

These are "count" vectors. What are the problems with doing it this way?

• Sparsity: many words just never appear with other words.

These are "count" vectors. What are the problems with doing it this way?

- Sparsity: many words just never appear with other words.
- Dimensionality: especially if you use fancy features (syntax, etc), you get million dimensional spaces.

These are "count" vectors. What are the problems with doing it this way?

- Sparsity: many words just never appear with other words.
- Dimensionality: especially if you use fancy features (syntax, etc), you get million dimensional spaces.

What we need? Dimensionality reduction, or some other way to start from a compressed space.

These are "count" vectors. What are the problems with doing it this way?

- Sparsity: many words just never appear with other words.
- Dimensionality: especially if you use fancy features (syntax, etc), you get million dimensional spaces.

What we need? Dimensionality reduction, or some other way to start from a compressed space.

• Sharing dimensions helps generalization.

These are "count" vectors. What are the problems with doing it this way?

- Sparsity: many words just never appear with other words.
- Dimensionality: especially if you use fancy features (syntax, etc), you get million dimensional spaces.

What we need? Dimensionality reduction, or some other way to start from a compressed space.

- Sharing dimensions helps generalization.
- Nevertheless, there's value in count vectors (for things that require explicit linguistic knowledge)

These are "count" vectors. What are the problems with doing it this way?

- Sparsity: many words just never appear with other words.
- Dimensionality: especially if you use fancy features (syntax, etc), you get million dimensional spaces.

What we need? Dimensionality reduction, or some other way to start from a compressed space.

- Sharing dimensions helps generalization.
- Nevertheless, there's value in count vectors (for things that require explicit linguistic knowledge)

So now... "predict" vectors...

- Our previous representations of words (and word classes) have been fairly flat
- For example, the word '*monkey*' can be represented as an integer, such as '7'

- Our previous representations of words (and word classes) have been fairly flat
- For example, the word '*monkey*' can be represented as an integer, such as '7'
- One-hot encoding represents that as:



- Our previous representations of words (and word classes) have been fairly flat
- For example, the word '*monkey*' can be represented as an integer, such as '7'
- One-hot encoding represents that as:



• and the word class (eg. 2) containing 'monkey':



- Our previous representations of words (and word classes) have been fairly flat
- For example, the word '*monkey*' can be represented as an integer, such as '7'
- One-hot encoding represents that as:



• and the word class (eg. 2) containing 'monkey':



 Both of these are sparse vectors of booleans, with just one entry having a 'true' value

- Our previous representations of words (and word classes) have been fairly flat
- For example, the word '*monkey*' can be represented as an integer, such as '7'
- One-hot encoding represents that as:



• and the word class (eg. 2) containing 'monkey':



- Both of these are sparse vectors of booleans, with just one entry having a 'true' value
- Either way, we're working with integers (..., -2, -1, 0, 1, 2, ...)



• We can do more with real numbers (eg. -1.5, 0.23, 55.01)



Words as  $\mathbb{R}$ eal Numbers

- We can do more with real numbers (eg. -1.5, 0.23, 55.01)
- We can represent the word '*monkey*' as a dense vector of real numbers:

0.38 -1.27 -0.55 1.44



- We can do more with real numbers (eg. -1.5, 0.23, 55.01)
- We can represent the word '*monkey*' as a dense vector of real numbers:

• We can have the plural form, 'monkeys' be close in that vector space:



# Words as $\mathbb{R}$ eal Numbers

- We can do more with real numbers (eg. -1.5, 0.23, 55.01)
- We can represent the word '*monkey*' as a dense vector of real numbers:

• We can have the plural form, 'monkeys' be close in that vector space:

**0.31** -1.27 -**0.61** 1.44

• We can also have a related word, like '*ape*' be close in that vector space, *but in different dimensions*:

• Word distances. For example, closest words to 'Sweden':

| Word        | Cosine Distance |
|-------------|-----------------|
| Norway      | 0.75            |
| Denmark     | 0.72            |
| Finland     | 0.62            |
| Switzerland | 0.59            |

• • •

• Word distances. For example, closest words to 'Sweden':

| Word        | Cosine Distance |
|-------------|-----------------|
| Norway      | 0.75            |
| Denmark     | 0.72            |
| Finland     | 0.62            |
| Switzerland | 0.59            |

• Analogy. E.g., Japan is to Tokyo as Germany is to Berlin



• Word distances. For example, closest words to 'Sweden':

| Word        | Cosine Distance |
|-------------|-----------------|
| Norway      | 0.75            |
| Denmark     | 0.72            |
| Finland     | 0.62            |
| Switzerland | 0.59            |

• Analogy. E.g., Japan is to Tokyo as Germany is to Berlin



 $_{15/1}$  Japan – Tokyo  $\approx$  Germany – Berlin

- Sentence Completion (actually just restricted language modeling):
- "All red-headed men who are above the age of [ 800 | seven | twenty-one | 1,200 | 60,000 ] years , are eligible."
- "That is his [generous | mother's | successful | favorite | main ] fault , but on the whole he's a good worker."

- Sentence Completion (actually just restricted language modeling):
- "All red-headed men who are above the age of [ 800 | seven | twenty-one | 1,200 | 60,000 ] years , are eligible."
- "That is his [generous | mother's | successful | favorite | main ] fault , but on the whole he's a good worker."
- Mikolov et al (2013b) selected the test word that best predicted the context

## Projection Layer in Neural Language Models

• Neural Language Modeling – this was actually one of the earliest uses of word vectors. We'll talk more about these later this semester



#### word2vec

• Tomáš Mikolov and colleagues found that you don't need the full neural-net language model to get useful word vectors

#### word2vec

- Tomáš Mikolov and colleagues found that you don't need the full neural-net language model to get useful word vectors
- In fact, you don't need a neural network at all. He removed the hidden layer, giving a traditional log-linear model

#### word2vec

- Tomáš Mikolov and colleagues found that you don't need the full neural-net language model to get useful word vectors
- In fact, you don't need a neural network at all. He removed the hidden layer, giving a traditional log-linear model
- He developed a simplified form of training called negative sampling (derived from earlier NCE). It's a little like a binary MaxEnt classifier

## word2vec: CBOW & Skip-gram



## Hyperparameters

- Window size: how much surrounding context to use
- Normalization: softmax (traditional) vs. hierarchical softmax vs. negative sampling
- Vector dimensions: 100–500 common
- Number of negative samples: 3–10 common
- Number of training epochs, initial learning rate, negative sample distribution ( $\alpha = 0.75$ ), model, ...

## Matrix Factorization of Count Co-Occurrences

 Glove and Latent Semantic Analysis (LSA) count the co-occurrences of word pairs, then use matrix factorization techniques like singular value decomposition (SVD) for dimensionality reduction of this original matrix



## Unifying these Approaches

- Word2vec, Glove, and LSA all do matrix factorization (Levy & Goldberg, 2014), but the successful ones are weighted for word frequency
- Pointwise Mutual Information (PMI) is (implicitly) used by these:

$$\mathsf{PMI}(x, y) = \log \frac{P(x, y)}{P(x) P(y)}$$

## **Bilingual Word Vectors**



## **Bilingual Word Vectors**



Monolingual objective: maximize likelihood of training set, where  $P(w|c) = \sigma(\mathbf{w} \cdot \mathbf{c})$ 

Multilingual objective: maximize likelihood of both sentence-aligned training sets (s & t), based on:  $\sigma(\mathbf{w_t} \cdot \mathbf{c_t}) + \sigma(\mathbf{w_t} \cdot \mathbf{c_s}) + \sigma(\mathbf{w_s} \cdot \mathbf{c_s}) + \sigma(\mathbf{w_s} \cdot \mathbf{c_t})$ 

23 / 1

#### **Bilingual Word Vectors Comparison**

| Method                  | No word<br>alignments<br>required | No prior<br>on the<br>mapping<br>between<br>target<br>vectors | No explicit<br>alignments<br>of target<br>vectors | Compu-<br>tationally<br>efficient | Can<br>leverage<br>mono-<br>lingual<br>corpus | Free<br>software |
|-------------------------|-----------------------------------|---------------------------------------------------------------|---------------------------------------------------|-----------------------------------|-----------------------------------------------|------------------|
| Klementiev et al (2012) | $\checkmark$                      | х                                                             | $\checkmark$                                      | х                                 | $\checkmark$                                  | х                |
| BiCVM                   | $\checkmark$                      | $\checkmark$                                                  | х                                                 | $\checkmark$                      | х                                             | $\checkmark$     |
| Bilingual autoencoders  | $\checkmark$                      | $\checkmark$                                                  | х                                                 | х                                 | х                                             | $\checkmark$     |
| BilBOWA                 | $\checkmark$                      | $\checkmark$                                                  | x                                                 | $\checkmark$                      | $\checkmark$                                  | $\checkmark$     |
| Trans-gram              | $\checkmark$                      | $\checkmark$                                                  | $\checkmark$                                      | $\checkmark$                      | $\checkmark$                                  | х                |

# Try Them Out!

- Original word2vec code: https://code.google.com/p/word2vec/ - includes nice illustrations
- Python version: Gensim
- Java version in DL4J
- Glove