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Jorge Luis Borges

An Argentinian philosopher and fiction writer. One of his stories
mentions ’a certain Chinese Encyclopedia’, the Celestial Emporium
of Benevolent knowledge. It contains a classifcation of animals.

• those that belong to the emperor

• embalmed ones

• those that are trained

• suckling pigs

• mermaids

• fabulous ones

• stray dogs
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Jorge Luis Borges

. . . actually, it goes on.

• those that are included in the present classification

• those that tremble as if they are mad

• innumerable ones

• those drawn with a very fine camelhair brush

• others

• those that have just broken a flower vase

• those that from a long way off look like flies
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What words are

So far we’ve talked about words in order. But words have a
relationship to each other.

• We use dictionaries in real life for a reason.

• We need to make fine-grained distinctions, draw connections,
and so on.

• Humans make judgements about similarities.
• You know that “motorcycle” can be used in most, but not all

contexts that “car” can be used.
• English-German bilinguals know that “pride” and “Stolz” are

quite similar.
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Define “chair”

From dictionary.com (just the noun version):

• A seat, especially for one person, usually having four legs for
support and a rest for the back and often having rests for the
arms.

• Something that serves as a chair or supports like a chair: “two
men clasped hands to make a chair for their injured
companion”.

• A position of authority, as of a judge, professor, etc.

• The person occupying a seat of office, especially the
chairperson of a meeting: “the speaker addressed the chair”

• (in an orchestra) the position of a player, assigned by rank;
desk: “first clarinet chair”.

• “the chair”, Informal. electric chair.
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Words in terms of other words

That doesn’t seem very helpful, but it gives us a place to start.
Define “chair” in terms of features:

• +one-person, +four-legs, +support, +backrest, +armrest

• +authority

• +occupies-chair

• +orchestra

• +execution
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Words in terms of other words

OK, that gives us the definition of a chair in terms of (rather
specific) features.
Define the noun “cockpit”. Let’s go to dictionary.com again. I get
as features:

• +enclosed, +airplane, +controls, +panel, +seats

• +instrumentation, +automobile

• +pit, +cockfights

• +conflict

Very little overlaps.
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So can we compare them?

Encode features as 1 or 0
chair cockpit

one-person 1 0
backrest 1 0?
four-legs 1 0
support 1 0?
armrest 1 0?
authority 1 0?
enclosed 0 1
airplane 0 1
seats 0? 1
. . .
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Similarity

• What we’ve just defined is a vector space.

• Dimension = feature. So far it’s a low-dimensional space.

• How can we measure the similarity between them? Common
answer: cosine similarity.

• So what would the similarity of “chair” and “cockpit” be in
our space? Probably zero!
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Words in terms of other words

We need a new data source. Collect it from a real corpus. Let’s try
Google.

chair cockpit
one-person
backrest
four-legs
support
armrest
authority
enclosed
airplane
seats
. . .

Now it’s not so bad: we can get a non-zero similarity. Yay?
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Words in terms of other words

• In fact, rather than using dictionary definitions of explicit
features, cut out the middle man.

• “Learn” a vector for each word by counting corpus context.
Ways of learning:

• Simple co-occurrence counts based on a window.
• The vocabulary basically becomes the feature space.

• More complex counts, such as POS tags, bits of parse trees.

• Sometimes raw counts aren’t what you need: smoothing,
reweighting.
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Words in terms of other words

These are “count” vectors. What are the problems with doing it
this way?

• Sparsity: many words just never appear with other words.

• Dimensionality: especially if you use fancy features (syntax,
etc), you get million dimensional spaces.

What we need? Dimensionality reduction, or some other way to
start from a compressed space.

• Sharing dimensions helps generalization.

• Nevertheless, there’s value in count vectors (for things that
require explicit linguistic knowledge)

So now. . . “predict” vectors. . .
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Words as Integers

• Our previous representations of words (and word classes) have
been fairly flat

• For example, the word ‘monkey ’ can be represented as an
integer, such as ‘7’

• One-hot encoding represents that as:

0 0 0 0 0 0 1 0 0 0 . . . 0

• and the word class (eg. 2) containing ‘monkey ’:

0 1 0 0

• Both of these are sparse vectors of booleans, with just one
entry having a ‘true’ value

• Either way, we’re working with integers (. . . , -2, -1, 0, 1, 2, . . . )
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Words as Real Numbers

• We can do more with real numbers (eg. -1.5, 0.23, 55.01)

• We can represent the word ‘monkey ’ as a dense vector of real
numbers:

0.38 -1.27 -0.55 1.44

• We can have the plural form, ‘monkeys’ be close in that
vector space:

0.31 -1.27 -0.61 1.44

• We can also have a related word, like ‘ape’ be close in that
vector space, but in different dimensions:

0.38 -1.33 -0.55 1.49
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Applications of Word Vectors
• Word distances. For example, closest words to ‘Sweden’:

Word Cosine Distance
Norway 0.75

Denmark 0.72
Finland 0.62

Switzerland 0.59
. . .

• Analogy. E.g., Japan is to Tokyo as Germany is to Berlin

Japan – Tokyo ≈ Germany – Berlin
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Applications of Word Vectors

• Sentence Completion (actually just restricted language
modeling):

• “All red-headed men who are above the age of [ 800 | seven |
twenty-one | 1,200 | 60,000 ] years , are eligible.”

• “That is his [ generous | mother’s | successful | favorite |
main ] fault , but on the whole he’s a good worker.”

• Mikolov et al (2013b) selected the test word that best
predicted the context

16 / 1
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Projection Layer in Neural Language Models

• Neural Language Modeling – this was actually one of the
earliest uses of word vectors. We’ll talk more about these later
this semester

softmax

tanh

. . . . . .. . .

. . . . . .

. . . . . .

across words

most computation here

index for index for index for

shared parameters

Matrix

in
lookup
Table

. . .

C

C

wt−1wt−2

C(wt−2) C(wt−1)C(wt−n+1)

wt−n+1

i-th output = P(wt = i | context)

Word
Projection
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word2vec

• Tomáš Mikolov and colleagues found that you don’t need the
full neural-net language model to get useful word vectors

• In fact, you don’t need a neural network at all. He removed
the hidden layer, giving a traditional log-linear model

• He developed a simplified form of training called negative
sampling (derived from earlier NCE). It’s a little like a binary
MaxEnt classifier
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word2vec: CBOW & Skip-gram
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Hyperparameters

• Window size: how much surrounding context to use

• Normalization: softmax (traditional) vs. hierarchical softmax
vs. negative sampling

• Vector dimensions: 100–500 common

• Number of negative samples: 3–10 common

• Number of training epochs, initial learning rate, negative
sample distribution (α = 0.75), model, . . .
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Matrix Factorization of Count Co-Occurrences

• Glove and Latent Semantic Analysis (LSA) count the
co-occurrences of word pairs, then use matrix factorization
techniques like singular value decomposition (SVD) for
dimensionality reduction of this original matrix
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Unifying these Approaches

• Word2vec, Glove, and LSA all do matrix factorization (Levy &
Goldberg, 2014), but the successful ones are weighted for
word frequency

• Pointwise Mutual Information (PMI) is (implicitly) used by
these:

PMI(x , y) = log
P(x , y)

P(x)P(y)
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Bilingual Word Vectors

Monolingual objective: maximize likelihood of training set, where
P(w |c) = σ(w · c)

Multilingual objective: maximize likelihood of both
sentence-aligned training sets (s & t), based on:
σ(wt · ct) + σ(wt · cs) + σ(ws · cs) + σ(ws · ct)

Courtesy of Hermann & Blunsom (2013)
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Bilingual Word Vectors Comparison

Method

No word

alignments

required

No prior

on the

mapping

between

target

vectors

No explicit

alignments

of target

vectors

Compu-

tationally

efficient

Can

leverage

mono-

lingual

corpus

Free

software

Klementiev et al (2012) X x X x X x

BiCVM X X x X x X

Bilingual autoencoders X X x x x X

BilBOWA X X x X X X

Trans-gram X X X X X x

Courtesy of Coulmance et al. (2015)
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http://papers.nips.cc/paper/5270-an-autoencoder-approach-to-learning-bilingual-word-representations
http://sarathchandar.in/data/corr_net.zip
http://arxiv.org/abs/1410.2455
https://github.com/gouwsmeister/bilbowa
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Try Them Out!

• Original word2vec code:
https://code.google.com/p/word2vec/ – includes nice
illustrations

• Python version: Gensim

• Java version in DL4J

• Glove
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