1/18

Neural Networks

Part 2

Normalization Speedups and Processing Sequential Data

Jon Dehdari and Asad Sayeed

January 18, 2017

http://jon.dehdari.org
http://www.coli.uni-saarland.de/~asayeed/

Good Morning!

2/18

First things first

e Just want to know: how well do we remember our matrix
multiplication?

3/18

First things first

e Just want to know: how well do we remember our matrix
multiplication?
e Or linear algebra?

3/18

First things first

e Just want to know: how well do we remember our matrix
multiplication?
e Or linear algebra?
e Then when we intone this:
tanh(Wx + b)
We all get what it means?

3/18

First things first

Just want to know: how well do we remember our matrix
multiplication?

Or linear algebra?
Then when we intone this:

tanh(Wx + b)
We all get what it means?

And do we remember what regression actually is?

3/18

First things first

e Just want to know: how well do we remember our matrix
multiplication?
e Or linear algebra?
e Then when we intone this:
tanh(Wx + b)
We all get what it means?
e And do we remember what regression actually is?

e When | say “train a model”, do we all know what training an
NN really “means”?

3/18

3/18

First things first

e Just want to know: how well do we remember our matrix
multiplication?
e Or linear algebra?
e Then when we intone this:
tanh(Wx + b)
We all get what it means?
e And do we remember what regression actually is?

e When | say “train a model”, do we all know what training an
NN really “means”?

OK, great, | just wanted to make sure we’re on the same
page

Second things second

e OK, now that we have that out of the way, remember
softmax?

6Wy.x <+ exponentiation helps ensure scores are positive

P(y|x) =
(|) Z normah%atrfm congTant to ensure the
= score o possible olitcomes sums to 1
eWyx
= Wp-x + toget Z, we just add up scores from
Zh € aII pOSSIbIe outcomes

= softmax(W,, - x)

4/18

Second things second

e OK, now that we have that out of the way, remember
softmax?

6Wy.x <+ exponentiation helps ensure scores are positive

P(y|x) =
(|) Z normah%atrf)n con, Tant to ensure the
= score o possible olitcomes sums to 1
eWyx
= Wp-x + toget Z, we just add up scores from
Zh € aII pOSSIbIe outcomes

= softmax(W,, - x)

e What does it mean?

4/18

Second things second

e OK, now that we have that out of the way, remember
softmax?

6Wy.x <+ exponentiation helps ensure scores are positive

P(yix) = =

normah%atrf)n con Tant to ensure the
< score o possible olitcomes sums to 1

eWyx

E eWh'X . to get Z, we just add up scores from
h all possible outcomes

= softmax(W,, - x)

e What does it mean?

e But there's a problem. ..

4/18

Softmax Normalization

e The slowest part of training a
neural net LM is softmax
normalization

e Why? Before the softmax layer
(final layer) we just have a real
number, not a probability

e So we need to know the sum of
scores for all possible words being
predicted (ie. the normalization
constant)

5 /18

i-th output = P(w, = i| context)
softmax
Ceee N > ® D (XX
L4 7 A}
4 ’ .
’ ’ most| computation here \
’ ’ \
/ 1 \
1 1 1
1 1 1
1
! tanh !
! Coee - e o) |

1
1
1
1
1
1
1

.
C(Wen+] . JCWi—2) Clwi-)\ _ -~
(e o) —e) (e o)
Table .. Matrix C
!OockiuP shared parameters
m across words
index for Wi—n+1 index for wi— index for wy—;

Softmax Normalization

e The slowest part of training a
neural net LM is softmax
normalization

e Why? Before the softmax layer
(final layer) we just have a real
number, not a probability

e So we need to know the sum of
scores for all possible words being
predicted (ie. the normalization
constant)

i-th output = P(w, = i context)
softmax
X [(XX
A}
\
most| computation here \
\
\
\
1
tanh !
1
1
I
C(Wi— C(Wi-1)
-0] (X
Table . .. Matrix C
look—uj Sesssssssssscassnaanaben :
inC P shared parameters
across words
index for Wy—p 41 mdux for wy— index for wy—;

e This involves | V| steps, where | V| is the size of the vocabulary
e Typical values of |V/| are between 10K to 10M

e We must do this for every word in our training set (eg.

1M-1B), every epoch (> 10)

5 /18

Speeding Up Normalization

e Can we speed up normalization? We can approximate Z:

6 /18

6 /18

Speeding Up Normalization

e Can we speed up normalization? We can approximate Z:

e Class-based Decomposition works like class-based LMs:
first determine prob. of a given word's class/POS, then the
prob. of the specific word

Speeding Up Normalization

e Can we speed up normalization? We can approximate Z:

e Class-based Decomposition works like class-based LMs:
first determine prob. of a given word's class/POS, then the
prob. of the specific word

e Hierarchical Softmax extends this idea to a fully
binary-branching hierarchy of the vocabulary (like an
ontology)

6 /18

6 /18

Speeding Up Normalization

Can we speed up normalization? We can approximate Z:

Class-based Decomposition works like class-based LMs:
first determine prob. of a given word's class/POS, then the
prob. of the specific word

Hierarchical Softmax extends this idea to a fully
binary-branching hierarchy of the vocabulary (like an
ontology)

Noise Contrastive Estimation (NCE) disposes with MLE (in
Softmax). Instead, a binary classifier is learned: observed
training data vs. artificially generated noise. word2vec's
negative sampling is a simplified version.

Speeding Up Normalization

e Can we speed up normalization? We can approximate Z:

e Class-based Decomposition works like class-based LMs:
first determine prob. of a given word's class/POS, then the
prob. of the specific word

e Hierarchical Softmax extends this idea to a fully
binary-branching hierarchy of the vocabulary (like an
ontology)

¢ Noise Contrastive Estimation (NCE) disposes with MLE (in
Softmax). Instead, a binary classifier is learned: observed
training data vs. artificially generated noise. word2vec's
negative sampling is a simplified version.

e Self Normalization ensures that the normalization constant
Z is close to one. Slow for training, fast for test-time queries

6 /18

Neural Networks for Sequential Data

o Feedforward (FF) networks only indirectly deal with sequential
data (like language)

e FF Neural LMs are basically ‘soft’ n-gram LMs — their history
is still fixed

7 /18

Neural Networks for Sequential Data

o Feedforward (FF) networks only indirectly deal with sequential
data (like language)

e FF Neural LMs are basically ‘soft’ n-gram LMs — their history
is still fixed

e The model needs to ‘remember’ a longer history, with loops

7 /18

Recurrent Neural Networks

A neural net with loops is called recurrent

8 /18

8 /18

Recurrent Neural Networks

A neural net with loops is called recurrent

The current hidden layer of the

model is based on both the current

word and the hidden layer of the
previous timestep W[

This is implemented by copying the _
i State/Hidden Copy (delayed)
hidden layer to another layer,

overwriting the existing weights v
This specific RNN is called an v
Elman network (or simple RNN Previous State

/ SRN)

To train an RNN, we first need to ‘unroll’ the loops

Training RNNs with BPTT

e Backpropagation through time (BPTT) trains RNNs by
unrolling the most recent part of the loop

e Now the network is feedforward

e Below is an example of an unrolled RNN using last 3 states

State/Hidden Copy (delayed) State/Hidden
\%
v U
v State/Hidden (t — 1)

Previous State v
U

State/Hidden (t — 2)

AN

State/Hidden (t — 3)

9/18

Problems with Elman Networks / SRNs

e The main problem with EIman networks (SRNs) is that
gradients less than 1 become exponentially small over time
(the vanishing gradient problem) ...

e and gradients greater than 1 become exponentially large over
time (the exploding gradient problem)’

e This leads to instability, and bad results

10 / 18

10 / 18

Problems with Elman Networks / SRNs

The main problem with Elman networks (SRNs) is that
gradients less than 1 become exponentially small over time
(the vanishing gradient problem) ...

and gradients greater than 1 become exponentially large over
time (the exploding gradient problem)’

This leads to instability, and bad results

What if we had another neural network help the first network
learn long-distance relationships?

10 / 18

Problems with Elman Networks / SRNs

The main problem with Elman networks (SRNs) is that
gradients less than 1 become exponentially small over time
(the vanishing gradient problem) ...

and gradients greater than 1 become exponentially large over
time (the exploding gradient problem)’

This leads to instability, and bad results

What if we had another neural network help the first network
learn long-distance relationships?

That's basically what we do when we add more weight
matrices to a neural network

10 / 18

Problems with Elman Networks / SRNs

The main problem with Elman networks (SRNs) is that
gradients less than 1 become exponentially small over time
(the vanishing gradient problem) ...

and gradients greater than 1 become exponentially large over
time (the exploding gradient problem)’

This leads to instability, and bad results

What if we had another neural network help the first network
learn long-distance relationships?

That's basically what we do when we add more weight
matrices to a neural network

As you might guess, that's what we're going to do ...

11 /18

Long Short-term Memory

forget gate

self-recurrent
connection

memory cell ___| |, memory cell
input output

Input gate output gate

¢ A long short-term memory (LSTM) network adds more

‘memory gates’, so that
long-distance phenomena in our data can be held in the

weight matrices to function as soft

network over multiple timesteps

http://deeplearning.net/tutorial/lstm.html
https://colah.github.io/posts/2015-08-Understanding-LSTMs

Long Short-term Memory

forget gate
self-recurrent
e connection

memory cell ___| |, memory cell
input output
I [
Input gate output gate

A long short-term memory (LSTM) network adds more
weight matrices to function as soft ‘memory gates', so that
long-distance phenomena in our data can be held in the
network over multiple timesteps

Input gate: iy = o(Wixt + Uiht—1 + b;)

Candidate memory state: C = tanh(Wex: + Uche—1 + bc)
Forget gate: f; = o(Wext + Urhi—1 + by)

Memory state: C; = iy ® (.N} + (O Ct_l

Output gate: o = o(Woxt + Uoht—1 + VoGt + by)
Output: hy = oy © tanh(C;)

11 /18

http://deeplearning.net/tutorial/lstm.html
https://colah.github.io/posts/2015-08-Understanding-LSTMs

LSTM - anatomy

forget gate
self-recurrent
connection
memory cell » memory cell
input output
[I
Input gate output gate

e Input gate: iy = o(Wixt + Uihi—1 + bj)
e Sigmoid - between 0 and 1, used to weight importance of
input.
e x; current input, h;_; previous hidden state.

12 /18

LSTM - anatomy

forget gate
self-recurrent

connection

memory cell » memory cell
input output

[I
Input gate output gate

e Input gate: iy = o(Wixt + Uihi—1 + bj)
e Sigmoid - between 0 and 1, used to weight importance of
input.
e x; current input, h;_; previous hidden state.
e Candidate memory state: C; = tanh(Wex: + Uche—1 + be)
e What the cell should remember given current input and
previous hidden state, other things being equal
e tanh makes it between -1 and 1.

12 /18

LSTM - anatomy

forget gate
self-recurrent

connection

memory cell » memory cell
input output

[I
Input gate output gate

e Input gate: iy = o(Wixt + Uihi—1 + bj)
e Sigmoid - between 0 and 1, used to weight importance of
input.
e x; current input, h;_; previous hidden state.
e Candidate memory state: C; = tanh(Wex: + Uche—1 + be)
e What the cell should remember given current input and
previous hidden state, other things being equal
e tanh makes it between -1 and 1.

e Now come the fun parts.

12 /18

LSTM - anatomy

forget gate
self-recurrent

connection

memory cell » memory cell
input output

[I
Input gate output gate

e Forget gate: f; = o(Wext + Urhi—1 + by)
e Sigmoid - between 0 and 1, used to weight how much we're
going to discount current memory state.
e x; current input, h;_; previous hidden state.
o (Weights have to be learned for each gate type!)

13 /18

LSTM - anatomy

forget gate
self-recurrent

connection

memory cell » memory cell
input output

[I
Input gate output gate

e Forget gate: f; = o(Wext + Urhi—1 + by)
e Sigmoid - between 0 and 1, used to weight how much we're
going to discount current memory state.
e x; current input, h;_; previous hidden state.
o (Weights have to be learned for each gate type!)
e Memory state: C;=ir ® Co+ © Co_1
e What the cell is going to remember, given the discount of the
forget gate of the previous memory state.

13 /18

LSTM - anatomy

forget gate
self-recurrent
connection

memory cell __| |, memory cell
input output
I I
Input gate output gate

e Output gate: or = o(Wox¢ + Uosht—1 + VoGt + bo)
e Now includes weights not only on x; and h;_1, but also C; —ie,
how much the new memory state contributes to the next cell.

14 /18

LSTM - anatomy

forget gate
self-recurrent
connection
memory cell __| |, memory cell
input output
I I
Input gate output gate

e Output gate: or = o(Wox¢ + Uosht—1 + VoGt + bo)
e Now includes weights not only on x; and h;_1, but also C; —ie,
how much the new memory state contributes to the next cell.

e Output: hy = oy ® tanh(C;) - then emit the new state for the
next cell

14 /18

LSTM - anatomy

forget gate
self-recurrent
connection
memory cell __| |, memory cell
input output
I I
Input gate output gate

e Output gate: or = o(Wox¢ + Uosht—1 + VoGt + bo)
e Now includes weights not only on x; and h;_1, but also C; —ie,
how much the new memory state contributes to the next cell.

e Output: hy = oy ® tanh(C;) - then emit the new state for the
next cell

And then it's all a matter of training, simple, right?

14 /18

Gates

e Each soft gate that we use is just another weight matrix that we
apply to various inputs, then squash through a logistic function

15 / 18

http://www.amusingtime.com/funny/funny-signs/page/209

15 / 18

Gates

e Each soft gate that we use is just another weight matrix that we
apply to various inputs, then squash through a logistic function

e For example, if the value of the forget gate f is 0, the memory state
from the previous timestep (C¢_1) is completely forgotten

http://www.amusingtime.com/funny/funny-signs/page/209

Gates

e Each soft gate that we use is just another weight matrix that we
apply to various inputs, then squash through a logistic function

e For example, if the value of the forget gate f is 0, the memory state
from the previous timestep (C¢_1) is completely forgotten
o If f =1, we fully keep the memory state of the previous timestep

15 / 18

http://www.amusingtime.com/funny/funny-signs/page/209

Gates

Each soft gate that we use is just another weight matrix that we
apply to various inputs, then squash through a logistic function

For example, if the value of the forget gate f is 0, the memory state
from the previous timestep (C¢_1) is completely forgotten

If f =1, we fully keep the memory state of the previous timestep

[]

The value of f can be between 0 and 1, so the memory decays

15 / 18

http://www.amusingtime.com/funny/funny-signs/page/209

Gates

Each soft gate that we use is just another weight matrix that we
apply to various inputs, then squash through a logistic function

For example, if the value of the forget gate f is 0, the memory state
from the previous timestep (C¢_1) is completely forgotten

[]

If f =1, we fully keep the memory state of the previous timestep

The value of f can be between 0 and 1, so the memory decays

That's a big difference over EIman networks / SRNs

15 / 18

http://www.amusingtime.com/funny/funny-signs/page/209

Gated Recurrent Units (GRUs)

(a) Long Short-Term Memory (b) Gated Recurrent Unit

Figure I: Tllustration of (a) LSTM and (b) gated recurrent units. (a) i, f and o are the input, forget

and output gates, respectively. ¢ and ¢ denote the memory cell and the new memory cell content. (b)

r and z are the reset and update gates, and h and h are the activation and the candidate activation.
Gated recurrent units (GRUs) are very similar to LSTMs,
but are a little simpler
GRUs merge the forget and input gates into a single update
gate
GRUs also merge the hidden state and the cell state
Both LSTMs and GRUs achieve similar performance on many

tasks

16 / 18

http://arxiv.org/pdf/1412.3555v1.pdf

Rube Goldberg Network

17 / 18

Further Reading

Overviews:
https://www.reddit.com/r/MachinelLearning/comments/44bxdj/scrn_vs_lstm/czp4hqr/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://medium.com/@shiyan/understanding-1lstm-and-its-diagrams-37e2f46£1714
http://deeplearning.net/tutorial/lstm.html

http://arxiv.org/abs/1412.3555

https:
//www.tensorflow.org/versions/master/tutorials/recurrent/index.html#recurrent-neural-networks

http://keras.io/layers/recurrent/
https://drive.google.com/open?id=0B-aFax-9-qt3S1lodkpmc1MOMUk
® https://en.wikipedia.org/wiki/LSTM

Original Papers:
® Elman, Jeffrey L. 1990. Finding Structure in Time. Cognitive Science 14.179-211.

® Hochreiter, Sepp, and Jiirgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation
9.1735-1780.

® Kyunghyun Cho, Bart van Merriénboer, Caglar Giilcehre, Fethi Bougares, Holger Schwenk, and Yoshua
Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine
translation. In Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014).

18 / 18

https://www.reddit.com/r/MachineLearning/comments/44bxdj/scrn_vs_lstm/czp4hqr/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://medium.com/@shiyan/understanding-lstm-and-its-diagrams-37e2f46f1714
http://deeplearning.net/tutorial/lstm.html
http://arxiv.org/abs/1412.3555
https://www.tensorflow.org/versions/master/tutorials/recurrent/index.html#recurrent-neural-networks
https://www.tensorflow.org/versions/master/tutorials/recurrent/index.html#recurrent-neural-networks
http://keras.io/layers/recurrent/
https://drive.google.com/open?id=0B-aFax-9-qt3Sllodkpmc1M0MUk
https://en.wikipedia.org/wiki/LSTM
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.9476
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078

