
Neural Networks

Part 2

Normalization Speedups and Processing Sequential Data

Jon Dehdari and Asad Sayeed

January 18, 2017

1 / 18

http://jon.dehdari.org
http://www.coli.uni-saarland.de/~asayeed/

Good Morning!

2 / 18

First things first

• Just want to know: how well do we remember our matrix
multiplication?

• Or linear algebra?

• Then when we intone this:

tanh(W x + b)

We all get what it means?

• And do we remember what regression actually is?

• When I say “train a model”, do we all know what training an
NN really “means”?

OK, great, I just wanted to make sure we’re on the same
page

3 / 18

First things first

• Just want to know: how well do we remember our matrix
multiplication?

• Or linear algebra?

• Then when we intone this:

tanh(W x + b)

We all get what it means?

• And do we remember what regression actually is?

• When I say “train a model”, do we all know what training an
NN really “means”?

OK, great, I just wanted to make sure we’re on the same
page

3 / 18

First things first

• Just want to know: how well do we remember our matrix
multiplication?

• Or linear algebra?

• Then when we intone this:

tanh(W x + b)

We all get what it means?

• And do we remember what regression actually is?

• When I say “train a model”, do we all know what training an
NN really “means”?

OK, great, I just wanted to make sure we’re on the same
page

3 / 18

First things first

• Just want to know: how well do we remember our matrix
multiplication?

• Or linear algebra?

• Then when we intone this:

tanh(W x + b)

We all get what it means?

• And do we remember what regression actually is?

• When I say “train a model”, do we all know what training an
NN really “means”?

OK, great, I just wanted to make sure we’re on the same
page

3 / 18

First things first

• Just want to know: how well do we remember our matrix
multiplication?

• Or linear algebra?

• Then when we intone this:

tanh(W x + b)

We all get what it means?

• And do we remember what regression actually is?

• When I say “train a model”, do we all know what training an
NN really “means”?

OK, great, I just wanted to make sure we’re on the same
page

3 / 18

First things first

• Just want to know: how well do we remember our matrix
multiplication?

• Or linear algebra?

• Then when we intone this:

tanh(W x + b)

We all get what it means?

• And do we remember what regression actually is?

• When I say “train a model”, do we all know what training an
NN really “means”?

OK, great, I just wanted to make sure we’re on the same
page

3 / 18

Second things second

• OK, now that we have that out of the way, remember
softmax?

P(y |x) =
eW y ·x

Z

← exponentiation helps ensure scores are positive

← normalization constant, to ensure the
score of all possible outcomes sums to 1

=
eW y ·x∑
h e

W h·x ←to get Z, we just add up scores from
all possible outcomes

= softmax(W y · x)

• What does it mean?

• But there’s a problem. . .

4 / 18

Second things second

• OK, now that we have that out of the way, remember
softmax?

P(y |x) =
eW y ·x

Z

← exponentiation helps ensure scores are positive

← normalization constant, to ensure the
score of all possible outcomes sums to 1

=
eW y ·x∑
h e

W h·x ←to get Z, we just add up scores from
all possible outcomes

= softmax(W y · x)

• What does it mean?

• But there’s a problem. . .

4 / 18

Second things second

• OK, now that we have that out of the way, remember
softmax?

P(y |x) =
eW y ·x

Z

← exponentiation helps ensure scores are positive

← normalization constant, to ensure the
score of all possible outcomes sums to 1

=
eW y ·x∑
h e

W h·x ←to get Z, we just add up scores from
all possible outcomes

= softmax(W y · x)

• What does it mean?

• But there’s a problem. . .

4 / 18

Softmax Normalization
• The slowest part of training a

neural net LM is softmax
normalization

• Why? Before the softmax layer
(final layer) we just have a real
number, not a probability

• So we need to know the sum of
scores for all possible words being
predicted (ie. the normalization
constant)

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
lookup
Table

. . .

C

C

wt−1wt−2

C(wt−2) C(wt−1)C(wt−n+1)

wt−n+1

i-th output = P(wt = i | context)

• This involves |V | steps, where |V | is the size of the vocabulary

• Typical values of |V | are between 10K to 10M

• We must do this for every word in our training set (eg.
1M–1B), every epoch (> 10)

5 / 18

Softmax Normalization
• The slowest part of training a

neural net LM is softmax
normalization

• Why? Before the softmax layer
(final layer) we just have a real
number, not a probability

• So we need to know the sum of
scores for all possible words being
predicted (ie. the normalization
constant)

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
lookup
Table

. . .

C

C

wt−1wt−2

C(wt−2) C(wt−1)C(wt−n+1)

wt−n+1

i-th output = P(wt = i | context)

• This involves |V | steps, where |V | is the size of the vocabulary

• Typical values of |V | are between 10K to 10M

• We must do this for every word in our training set (eg.
1M–1B), every epoch (> 10)

5 / 18

Speeding Up Normalization

• Can we speed up normalization? We can approximate Z :

• Class-based Decomposition works like class-based LMs:
first determine prob. of a given word’s class/POS, then the
prob. of the specific word O(

√
|V |)

• Hierarchical Softmax extends this idea to a fully
binary-branching hierarchy of the vocabulary (like an
ontology) O(log2(|V |))

• Noise Contrastive Estimation (NCE) disposes with MLE (in
Softmax). Instead, a binary classifier is learned: observed
training data vs. artificially generated noise. word2vec’s
negative sampling is a simplified version. O(1)

• Self Normalization ensures that the normalization constant
Z is close to one. Slow for training, fast for test-time queries

6 / 18

Speeding Up Normalization

• Can we speed up normalization? We can approximate Z :

• Class-based Decomposition works like class-based LMs:
first determine prob. of a given word’s class/POS, then the
prob. of the specific word O(

√
|V |)

• Hierarchical Softmax extends this idea to a fully
binary-branching hierarchy of the vocabulary (like an
ontology) O(log2(|V |))

• Noise Contrastive Estimation (NCE) disposes with MLE (in
Softmax). Instead, a binary classifier is learned: observed
training data vs. artificially generated noise. word2vec’s
negative sampling is a simplified version. O(1)

• Self Normalization ensures that the normalization constant
Z is close to one. Slow for training, fast for test-time queries

6 / 18

Speeding Up Normalization

• Can we speed up normalization? We can approximate Z :

• Class-based Decomposition works like class-based LMs:
first determine prob. of a given word’s class/POS, then the
prob. of the specific word O(

√
|V |)

• Hierarchical Softmax extends this idea to a fully
binary-branching hierarchy of the vocabulary (like an
ontology) O(log2(|V |))

• Noise Contrastive Estimation (NCE) disposes with MLE (in
Softmax). Instead, a binary classifier is learned: observed
training data vs. artificially generated noise. word2vec’s
negative sampling is a simplified version. O(1)

• Self Normalization ensures that the normalization constant
Z is close to one. Slow for training, fast for test-time queries

6 / 18

Speeding Up Normalization

• Can we speed up normalization? We can approximate Z :

• Class-based Decomposition works like class-based LMs:
first determine prob. of a given word’s class/POS, then the
prob. of the specific word O(

√
|V |)

• Hierarchical Softmax extends this idea to a fully
binary-branching hierarchy of the vocabulary (like an
ontology) O(log2(|V |))

• Noise Contrastive Estimation (NCE) disposes with MLE (in
Softmax). Instead, a binary classifier is learned: observed
training data vs. artificially generated noise. word2vec’s
negative sampling is a simplified version. O(1)

• Self Normalization ensures that the normalization constant
Z is close to one. Slow for training, fast for test-time queries

6 / 18

Speeding Up Normalization

• Can we speed up normalization? We can approximate Z :

• Class-based Decomposition works like class-based LMs:
first determine prob. of a given word’s class/POS, then the
prob. of the specific word O(

√
|V |)

• Hierarchical Softmax extends this idea to a fully
binary-branching hierarchy of the vocabulary (like an
ontology) O(log2(|V |))

• Noise Contrastive Estimation (NCE) disposes with MLE (in
Softmax). Instead, a binary classifier is learned: observed
training data vs. artificially generated noise. word2vec’s
negative sampling is a simplified version. O(1)

• Self Normalization ensures that the normalization constant
Z is close to one. Slow for training, fast for test-time queries

6 / 18

Neural Networks for Sequential Data

• Feedforward (FF) networks only indirectly deal with sequential
data (like language)

• FF Neural LMs are basically ‘soft’ n-gram LMs – their history
is still fixed

• The model needs to ‘remember’ a longer history, with loops

7 / 18

Neural Networks for Sequential Data

• Feedforward (FF) networks only indirectly deal with sequential
data (like language)

• FF Neural LMs are basically ‘soft’ n-gram LMs – their history
is still fixed

• The model needs to ‘remember’ a longer history, with loops

7 / 18

Recurrent Neural Networks

A neural net with loops is called recurrent

• The current hidden layer of the
model is based on both the current
word and the hidden layer of the
previous timestep

• This is implemented by copying the
hidden layer to another layer,
overwriting the existing weights

• This specific RNN is called an
Elman network (or simple RNN
/ SRN)

Output

State/Hidden

Input Previous State

W

V

U

Copy (delayed)

• To train an RNN, we first need to ‘unroll’ the loops

8 / 18

Recurrent Neural Networks

A neural net with loops is called recurrent

• The current hidden layer of the
model is based on both the current
word and the hidden layer of the
previous timestep

• This is implemented by copying the
hidden layer to another layer,
overwriting the existing weights

• This specific RNN is called an
Elman network (or simple RNN
/ SRN)

Output

State/Hidden

Input Previous State

W

V

U

Copy (delayed)

• To train an RNN, we first need to ‘unroll’ the loops

8 / 18

Training RNNs with BPTT
• Backpropagation through time (BPTT) trains RNNs by

unrolling the most recent part of the loop
• Now the network is feedforward
• Below is an example of an unrolled RNN using last 3 states (τ = 3)

Output

State/Hidden

Input State/Hidden (t − 1)

Input (t − 1) State/Hidden (t − 2)

Input (t − 2) State/Hidden (t − 3)

Output

State/Hidden

Input Previous State

W

V

U

V

U

V

U

W

V

U

Copy (delayed)

9 / 18

Problems with Elman Networks / SRNs

• The main problem with Elman networks (SRNs) is that
gradients less than 1 become exponentially small over time
(the vanishing gradient problem) ...

• and gradients greater than 1 become exponentially large over
time (the exploding gradient problem)

∗

• This leads to instability, and bad results

• What if we had another neural network help the first network
learn long-distance relationships?

• That’s basically what we do when we add more weight
matrices to a neural network

• As you might guess, that’s what we’re going to do ...

∗ The exploding gradient problem can be alleviated by clipping large gradient values to some maximum number.

10 / 18

Problems with Elman Networks / SRNs

• The main problem with Elman networks (SRNs) is that
gradients less than 1 become exponentially small over time
(the vanishing gradient problem) ...

• and gradients greater than 1 become exponentially large over
time (the exploding gradient problem)

∗

• This leads to instability, and bad results

• What if we had another neural network help the first network
learn long-distance relationships?

• That’s basically what we do when we add more weight
matrices to a neural network

• As you might guess, that’s what we’re going to do ...

∗ The exploding gradient problem can be alleviated by clipping large gradient values to some maximum number.

10 / 18

Problems with Elman Networks / SRNs

• The main problem with Elman networks (SRNs) is that
gradients less than 1 become exponentially small over time
(the vanishing gradient problem) ...

• and gradients greater than 1 become exponentially large over
time (the exploding gradient problem)

∗

• This leads to instability, and bad results

• What if we had another neural network help the first network
learn long-distance relationships?

• That’s basically what we do when we add more weight
matrices to a neural network

• As you might guess, that’s what we’re going to do ...

∗ The exploding gradient problem can be alleviated by clipping large gradient values to some maximum number.

10 / 18

Problems with Elman Networks / SRNs

• The main problem with Elman networks (SRNs) is that
gradients less than 1 become exponentially small over time
(the vanishing gradient problem) ...

• and gradients greater than 1 become exponentially large over
time (the exploding gradient problem)

∗

• This leads to instability, and bad results

• What if we had another neural network help the first network
learn long-distance relationships?

• That’s basically what we do when we add more weight
matrices to a neural network

• As you might guess, that’s what we’re going to do ...

∗ The exploding gradient problem can be alleviated by clipping large gradient values to some maximum number.

10 / 18

Long Short-term Memory

• A long short-term memory (LSTM) network adds more
weight matrices to function as soft ‘memory gates’, so that
long-distance phenomena in our data can be held in the
network over multiple timesteps

• Input gate: it = σ(Wixt + Uiht−1 + bi)
• Candidate memory state: C̃t = tanh(Wcxt + Ucht−1 + bc)
• Forget gate: ft = σ(Wf xt + Uf ht−1 + bf)
• Memory state: Ct = it � C̃t + ft � C̃t−1

• Output gate: ot = σ(Woxt + Uoht−1 + VoCt + bo)
• Output: ht = ot � tanh(Ct)

Image courtesy of a nice tutorial at http://deeplearning.net/tutorial/lstm.html. Another nice tutorial is at https://colah.github.io/posts/2015-08-Understanding-LSTMs. The symbol � is the Hadamard product (a.k.a. elementwise multiplication), which just multiplies corresponding elements of two matrices and returns another matrix of their products.

11 / 18

http://deeplearning.net/tutorial/lstm.html
https://colah.github.io/posts/2015-08-Understanding-LSTMs

Long Short-term Memory

• A long short-term memory (LSTM) network adds more
weight matrices to function as soft ‘memory gates’, so that
long-distance phenomena in our data can be held in the
network over multiple timesteps

• Input gate: it = σ(Wixt + Uiht−1 + bi)
• Candidate memory state: C̃t = tanh(Wcxt + Ucht−1 + bc)
• Forget gate: ft = σ(Wf xt + Uf ht−1 + bf)
• Memory state: Ct = it � C̃t + ft � C̃t−1

• Output gate: ot = σ(Woxt + Uoht−1 + VoCt + bo)
• Output: ht = ot � tanh(Ct)

Image courtesy of a nice tutorial at http://deeplearning.net/tutorial/lstm.html. Another nice tutorial is at https://colah.github.io/posts/2015-08-Understanding-LSTMs. The symbol � is the Hadamard product (a.k.a. elementwise multiplication), which just multiplies corresponding elements of two matrices and returns another matrix of their products.

11 / 18

http://deeplearning.net/tutorial/lstm.html
https://colah.github.io/posts/2015-08-Understanding-LSTMs

LSTM - anatomy

• Input gate: it = σ(Wixt + Uiht−1 + bi)
• Sigmoid - between 0 and 1, used to weight importance of

input.
• xt current input, ht−1 previous hidden state.

• Candidate memory state: C̃t = tanh(Wcxt + Ucht−1 + bc)
• What the cell should remember given current input and

previous hidden state, other things being equal
• tanh makes it between -1 and 1.

• Now come the fun parts.

12 / 18

LSTM - anatomy

• Input gate: it = σ(Wixt + Uiht−1 + bi)
• Sigmoid - between 0 and 1, used to weight importance of

input.
• xt current input, ht−1 previous hidden state.

• Candidate memory state: C̃t = tanh(Wcxt + Ucht−1 + bc)
• What the cell should remember given current input and

previous hidden state, other things being equal
• tanh makes it between -1 and 1.

• Now come the fun parts.

12 / 18

LSTM - anatomy

• Input gate: it = σ(Wixt + Uiht−1 + bi)
• Sigmoid - between 0 and 1, used to weight importance of

input.
• xt current input, ht−1 previous hidden state.

• Candidate memory state: C̃t = tanh(Wcxt + Ucht−1 + bc)
• What the cell should remember given current input and

previous hidden state, other things being equal
• tanh makes it between -1 and 1.

• Now come the fun parts.

12 / 18

LSTM - anatomy

• Forget gate: ft = σ(Wf xt + Uf ht−1 + bf)
• Sigmoid - between 0 and 1, used to weight how much we’re

going to discount current memory state.
• xt current input, ht−1 previous hidden state.
• (Weights have to be learned for each gate type!)

• Memory state: Ct = it � C̃t + ft � C̃t−1

• What the cell is going to remember, given the discount of the
forget gate of the previous memory state.

13 / 18

LSTM - anatomy

• Forget gate: ft = σ(Wf xt + Uf ht−1 + bf)
• Sigmoid - between 0 and 1, used to weight how much we’re

going to discount current memory state.
• xt current input, ht−1 previous hidden state.
• (Weights have to be learned for each gate type!)

• Memory state: Ct = it � C̃t + ft � C̃t−1

• What the cell is going to remember, given the discount of the
forget gate of the previous memory state.

13 / 18

LSTM - anatomy

• Output gate: ot = σ(Woxt + Uoht−1 + VoCt + bo)
• Now includes weights not only on xt and ht−1, but also Ct – ie,

how much the new memory state contributes to the next cell.

• Output: ht = ot � tanh(Ct) - then emit the new state for the
next cell

And then it’s all a matter of training, simple, right?

14 / 18

LSTM - anatomy

• Output gate: ot = σ(Woxt + Uoht−1 + VoCt + bo)
• Now includes weights not only on xt and ht−1, but also Ct – ie,

how much the new memory state contributes to the next cell.

• Output: ht = ot � tanh(Ct) - then emit the new state for the
next cell

And then it’s all a matter of training, simple, right?

14 / 18

LSTM - anatomy

• Output gate: ot = σ(Woxt + Uoht−1 + VoCt + bo)
• Now includes weights not only on xt and ht−1, but also Ct – ie,

how much the new memory state contributes to the next cell.

• Output: ht = ot � tanh(Ct) - then emit the new state for the
next cell

And then it’s all a matter of training, simple, right?

14 / 18

Gates

• Each soft gate that we use is just another weight matrix that we
apply to various inputs, then squash through a logistic function

• For example, if the value of the forget gate f is 0, the memory state
from the previous timestep (Ct−1) is completely forgotten

• If f = 1, we fully keep the memory state of the previous timestep

• The value of f can be between 0 and 1, so the memory decays

• That’s a big difference over Elman networks / SRNs

Image ostensibly from http://www.amusingtime.com/funny/funny-signs/page/209

15 / 18

http://www.amusingtime.com/funny/funny-signs/page/209

Gates

• Each soft gate that we use is just another weight matrix that we
apply to various inputs, then squash through a logistic function

• For example, if the value of the forget gate f is 0, the memory state
from the previous timestep (Ct−1) is completely forgotten

• If f = 1, we fully keep the memory state of the previous timestep

• The value of f can be between 0 and 1, so the memory decays

• That’s a big difference over Elman networks / SRNs

Image ostensibly from http://www.amusingtime.com/funny/funny-signs/page/209

15 / 18

http://www.amusingtime.com/funny/funny-signs/page/209

Gates

• Each soft gate that we use is just another weight matrix that we
apply to various inputs, then squash through a logistic function

• For example, if the value of the forget gate f is 0, the memory state
from the previous timestep (Ct−1) is completely forgotten

• If f = 1, we fully keep the memory state of the previous timestep

• The value of f can be between 0 and 1, so the memory decays

• That’s a big difference over Elman networks / SRNs

Image ostensibly from http://www.amusingtime.com/funny/funny-signs/page/209

15 / 18

http://www.amusingtime.com/funny/funny-signs/page/209

Gates

• Each soft gate that we use is just another weight matrix that we
apply to various inputs, then squash through a logistic function

• For example, if the value of the forget gate f is 0, the memory state
from the previous timestep (Ct−1) is completely forgotten

• If f = 1, we fully keep the memory state of the previous timestep

• The value of f can be between 0 and 1, so the memory decays

• That’s a big difference over Elman networks / SRNs

Image ostensibly from http://www.amusingtime.com/funny/funny-signs/page/209

15 / 18

http://www.amusingtime.com/funny/funny-signs/page/209

Gates

• Each soft gate that we use is just another weight matrix that we
apply to various inputs, then squash through a logistic function

• For example, if the value of the forget gate f is 0, the memory state
from the previous timestep (Ct−1) is completely forgotten

• If f = 1, we fully keep the memory state of the previous timestep

• The value of f can be between 0 and 1, so the memory decays

• That’s a big difference over Elman networks / SRNs
Image ostensibly from http://www.amusingtime.com/funny/funny-signs/page/209

15 / 18

http://www.amusingtime.com/funny/funny-signs/page/209

Gated Recurrent Units (GRUs)

f

c

c
~

+

+

o

i

IN

OUT

z

rh h
~ IN

OUT

(a) Long Short-Term Memory (b) Gated Recurrent Unit

Figure 1: Illustration of (a) LSTM and (b) gated recurrent units. (a) i, f and o are the input, forget
and output gates, respectively. c and c̃ denote the memory cell and the new memory cell content. (b)
r and z are the reset and update gates, and h and h̃ are the activation and the candidate activation.

• Gated recurrent units (GRUs) are very similar to LSTMs,
but are a little simpler

• GRUs merge the forget and input gates into a single update
gate

• GRUs also merge the hidden state and the cell state

• Both LSTMs and GRUs achieve similar performance on many
tasks

Image courtesy of http://arxiv.org/pdf/1412.3555v1.pdf

16 / 18

http://arxiv.org/pdf/1412.3555v1.pdf

Rube Goldberg Network

17 / 18

Further Reading

Overviews:
• https://www.reddit.com/r/MachineLearning/comments/44bxdj/scrn_vs_lstm/czp4hqr/

• https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• https://medium.com/@shiyan/understanding-lstm-and-its-diagrams-37e2f46f1714

• http://deeplearning.net/tutorial/lstm.html

• http://arxiv.org/abs/1412.3555

• https:

//www.tensorflow.org/versions/master/tutorials/recurrent/index.html#recurrent-neural-networks

• http://keras.io/layers/recurrent/

• https://drive.google.com/open?id=0B-aFax-9-qt3Sllodkpmc1M0MUk

• https://en.wikipedia.org/wiki/LSTM

Original Papers:
• Elman, Jeffrey L. 1990. Finding Structure in Time. Cognitive Science 14.179–211.

• Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation
9.1735–1780.

• Kyunghyun Cho, Bart van Merriënboer, Çağlar Gülçehre, Fethi Bougares, Holger Schwenk, and Yoshua
Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine
translation. In Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014).

18 / 18

https://www.reddit.com/r/MachineLearning/comments/44bxdj/scrn_vs_lstm/czp4hqr/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://medium.com/@shiyan/understanding-lstm-and-its-diagrams-37e2f46f1714
http://deeplearning.net/tutorial/lstm.html
http://arxiv.org/abs/1412.3555
https://www.tensorflow.org/versions/master/tutorials/recurrent/index.html#recurrent-neural-networks
https://www.tensorflow.org/versions/master/tutorials/recurrent/index.html#recurrent-neural-networks
http://keras.io/layers/recurrent/
https://drive.google.com/open?id=0B-aFax-9-qt3Sllodkpmc1M0MUk
https://en.wikipedia.org/wiki/LSTM
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.9476
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078

