Neural Networks

Part 2

Normalization Speedups and Processing Sequential Data

Jon Dehdari and Asad Sayeed

January 18, 2017

Good Morning!

First things first

- Just want to know: how well do we remember our matrix multiplication?

First things first

- Just want to know: how well do we remember our matrix multiplication?
- Or linear algebra?

First things first

- Just want to know: how well do we remember our matrix multiplication?
- Or linear algebra?
- Then when we intone this:

$$
\tanh (W \mathbf{x}+\mathbf{b})
$$

We all get what it means?

First things first

- Just want to know: how well do we remember our matrix multiplication?
- Or linear algebra?
- Then when we intone this:

$$
\tanh (W \mathbf{x}+\mathbf{b})
$$

We all get what it means?

- And do we remember what regression actually is?

First things first

- Just want to know: how well do we remember our matrix multiplication?
- Or linear algebra?
- Then when we intone this:

$$
\tanh (W \mathbf{x}+\mathbf{b})
$$

We all get what it means?

- And do we remember what regression actually is?
- When I say "train a model", do we all know what training an NN really "means"?

First things first

- Just want to know: how well do we remember our matrix multiplication?
- Or linear algebra?
- Then when we intone this:

$$
\tanh (W \mathbf{x}+\mathbf{b})
$$

We all get what it means?

- And do we remember what regression actually is?
- When I say "train a model", do we all know what training an NN really "means"?

OK, great, I just wanted to make sure we're on the same page

Second things second

- OK, now that we have that out of the way, remember softmax?

$$
\begin{aligned}
& P(y \mid \mathbf{x})=e^{\boldsymbol{W}_{y} \cdot \mathbf{x}} \leftarrow \text { exponentiation helps ensure scores are positive } \\
& \leftarrow \text { normalization constant, to ensure the } \text { score of all posible outcomes sums to } 1 \\
& =\frac{e^{\boldsymbol{W}_{y} \cdot \mathbf{x}}}{\sum_{h} e^{\boldsymbol{W}_{h} \cdot \mathbf{x}}} \stackrel{\text { all get } \begin{array}{c}
\text { possible outcomes }
\end{array}}{\text { we just add up scores from }} \\
& =\operatorname{softmax}\left(\boldsymbol{W}_{y} \cdot \mathbf{x}\right)
\end{aligned}
$$

Second things second

- OK, now that we have that out of the way, remember softmax?

$$
\begin{aligned}
P(y \mid \mathbf{x}) & =\frac{e^{\boldsymbol{W}_{y} \cdot \mathbf{x}} \leftarrow \text { exponentiation helps ensure scores are positive }}{\boldsymbol{Z}} \underset{\substack{\text { normalization constant, to ensure the } \\
\text { score of all possible outcomes sums to } 1}}{\sum_{h} e^{\boldsymbol{W}_{y} \cdot \mathbf{x}}} \\
& =\frac{e^{\text {en }}}{\substack{\text { all get } \\
\text { all } \\
\text { possible outcomes }}} \begin{array}{l}
\text { we just add up scores from }
\end{array} \\
& =\operatorname{softmax}\left(\mathbf{W}_{y} \cdot \mathbf{x}\right)
\end{aligned}
$$

- What does it mean?

Second things second

- OK, now that we have that out of the way, remember softmax?

$$
\begin{aligned}
P(y \mid \mathbf{x}) & =\frac{e^{\boldsymbol{W}_{y} \cdot \mathbf{x}} \leftarrow \text { exponentiation helps ensure scores are positive }}{\boldsymbol{Z}} \leftarrow \underset{\substack{\text { normalization constant, to ensure the } \\
\text { score of all possible outcomes sums to } 1}}{ } \\
& =\frac{e^{\boldsymbol{W}_{y} \cdot \mathbf{x}}}{\sum_{h} e^{\boldsymbol{W}_{h} \cdot \mathbf{x}}} \underset{\substack{\text { all get } \\
\text { ald } \\
\text { possible outcomes }}}{\text { we just add up scores from }} \\
& =\operatorname{softmax}\left(\mathbf{W}_{y} \cdot \mathbf{x}\right)
\end{aligned}
$$

- What does it mean?
- But there's a problem...

Softmax Normalization

- The slowest part of training a neural net LM is softmax normalization
- Why? Before the softmax layer (final layer) we just have a real number, not a probability
- So we need to know the sum of scores for all possible words being predicted (ie. the normalization constant)

Softmax Normalization

- The slowest part of training a neural net LM is softmax normalization
- Why? Before the softmax layer (final layer) we just have a real number, not a probability
- So we need to know the sum of scores for all possible words being predicted (ie. the normalization constant)

- This involves $|V|$ steps, where $|V|$ is the size of the vocabulary
- Typical values of $|V|$ are between 10 K to 10 M
- We must do this for every word in our training set (eg. $1 \mathrm{M}-1 \mathrm{~B}$), every epoch (>10)

Speeding Up Normalization

- Can we speed up normalization? We can approximate Z :

Speeding Up Normalization

- Can we speed up normalization? We can approximate Z :
- Class-based Decomposition works like class-based LMs: first determine prob. of a given word's class/POS, then the prob. of the specific word $\mathcal{O}(\sqrt{|V|})$

Speeding Up Normalization

- Can we speed up normalization? We can approximate Z :
- Class-based Decomposition works like class-based LMs: first determine prob. of a given word's class/POS, then the prob. of the specific word $\mathcal{O}(\sqrt{|V|})$
- Hierarchical Softmax extends this idea to a fully binary-branching hierarchy of the vocabulary (like an ontology) $\mathcal{O}\left(\log _{2}(|V|)\right)$

Speeding Up Normalization

- Can we speed up normalization? We can approximate Z :
- Class-based Decomposition works like class-based LMs: first determine prob. of a given word's class/POS, then the prob. of the specific word $\mathcal{O}(\sqrt{|V|})$
- Hierarchical Softmax extends this idea to a fully binary-branching hierarchy of the vocabulary (like an ontology) $\mathcal{O}\left(\log _{2}(|V|)\right)$
- Noise Contrastive Estimation (NCE) disposes with MLE (in Softmax). Instead, a binary classifier is learned: observed training data vs. artificially generated noise. word2vec's negative sampling is a simplified version. $\mathcal{O}(1)$

Speeding Up Normalization

- Can we speed up normalization? We can approximate Z :
- Class-based Decomposition works like class-based LMs: first determine prob. of a given word's class/POS, then the prob. of the specific word $\mathcal{O}(\sqrt{|V|})$
- Hierarchical Softmax extends this idea to a fully binary-branching hierarchy of the vocabulary (like an ontology) $\mathcal{O}\left(\log _{2}(|V|)\right)$
- Noise Contrastive Estimation (NCE) disposes with MLE (in Softmax). Instead, a binary classifier is learned: observed training data vs. artificially generated noise. word2vec's negative sampling is a simplified version. $\mathcal{O}(1)$
- Self Normalization ensures that the normalization constant Z is close to one. Slow for training, fast for test-time queries

Neural Networks for Sequential Data

- Feedforward (FF) networks only indirectly deal with sequential data (like language)
- FF Neural LMs are basically 'soft' n-gram LMs - their history is still fixed

Neural Networks for Sequential Data

- Feedforward (FF) networks only indirectly deal with sequential data (like language)
- FF Neural LMs are basically 'soft' n-gram LMs - their history is still fixed
- The model needs to 'remember' a longer history, with loops

Recurrent Neural Networks

A neural net with loops is called recurrent

Recurrent Neural Networks

A neural net with loops is called recurrent

- The current hidden layer of the model is based on both the current word and the hidden layer of the previous timestep
- This is implemented by copying the hidden layer to another layer, overwriting the existing weights
- This specific RNN is called an Elman network (or simple RNN / SRN)
- To train an RNN, we first need to 'unroll' the loops

Training RNNs with BPTT

- Backpropagation through time (BPTT) trains RNNs by unrolling the most recent part of the loop
- Now the network is feedforward
- Below is an example of an unrolled RNN using last 3 states $(\tau=3)$

Problems with Elman Networks / SRNs

- The main problem with Elman networks (SRNs) is that gradients less than 1 become exponentially small over time (the vanishing gradient problem) ...
- and gradients greater than 1 become exponentially large over time (the exploding gradient problem) ${ }^{*}$
- This leads to instability, and bad results

Problems with Elman Networks / SRNs

- The main problem with Elman networks (SRNs) is that gradients less than 1 become exponentially small over time (the vanishing gradient problem) ...
- and gradients greater than 1 become exponentially large over time (the exploding gradient problem) ${ }^{*}$
- This leads to instability, and bad results
- What if we had another neural network help the first network learn long-distance relationships?

Problems with Elman Networks / SRNs

- The main problem with Elman networks (SRNs) is that gradients less than 1 become exponentially small over time (the vanishing gradient problem) ...
- and gradients greater than 1 become exponentially large over time (the exploding gradient problem) ${ }^{*}$
- This leads to instability, and bad results
- What if we had another neural network help the first network learn long-distance relationships?
- That's basically what we do when we add more weight matrices to a neural network

Problems with Elman Networks / SRNs

- The main problem with Elman networks (SRNs) is that gradients less than 1 become exponentially small over time (the vanishing gradient problem) ...
- and gradients greater than 1 become exponentially large over time (the exploding gradient problem) ${ }^{*}$
- This leads to instability, and bad results
- What if we had another neural network help the first network learn long-distance relationships?
- That's basically what we do when we add more weight matrices to a neural network
- As you might guess, that's what we're going to do ...

Long Short-term Memory

- A long short-term memory (LSTM) network adds more weight matrices to function as soft 'memory gates', so that long-distance phenomena in our data can be held in the network over multiple timesteps

Long Short-term Memory

- A long short-term memory (LSTM) network adds more weight matrices to function as soft 'memory gates', so that long-distance phenomena in our data can be held in the network over multiple timesteps
- Input gate: $i_{t}=\sigma\left(W_{i} x_{t}+U_{i} h_{t-1}+b_{i}\right)$
- Candidate memory state: $\tilde{C}_{t}=\tanh \left(W_{c} x_{t}+U_{c} h_{t-1}+b_{c}\right)$
- Forget gate: $f_{t}=\sigma\left(W_{f} x_{t}+U_{f} h_{t-1}+b_{f}\right)$
- Memory state: $C_{t}=i_{t} \odot \tilde{C}_{t}+f_{t} \odot \tilde{C}_{t-1}$
- Output gate: $o_{t}=\sigma\left(W_{o} x_{t}+U_{o} h_{t-1}+V_{o} C_{t}+b_{o}\right)$
- Output: $h_{t}=o_{t} \odot \tanh \left(C_{t}\right)$

LSTM - anatomy

- Input gate: $i_{t}=\sigma\left(W_{i} x_{t}+U_{i} h_{t-1}+b_{i}\right)$
- Sigmoid - between 0 and 1 , used to weight importance of input.
- x_{t} current input, h_{t-1} previous hidden state.

LSTM - anatomy

- Input gate: $i_{t}=\sigma\left(W_{i} x_{t}+U_{i} h_{t-1}+b_{i}\right)$
- Sigmoid - between 0 and 1 , used to weight importance of input.
- x_{t} current input, h_{t-1} previous hidden state.
- Candidate memory state: $\tilde{C}_{t}=\tanh \left(W_{c} x_{t}+U_{c} h_{t-1}+b_{c}\right)$
- What the cell should remember given current input and previous hidden state, other things being equal
- tanh makes it between -1 and 1 .

LSTM - anatomy

- Input gate: $i_{t}=\sigma\left(W_{i} x_{t}+U_{i} h_{t-1}+b_{i}\right)$
- Sigmoid - between 0 and 1 , used to weight importance of input.
- x_{t} current input, h_{t-1} previous hidden state.
- Candidate memory state: $\tilde{C}_{t}=\tanh \left(W_{c} x_{t}+U_{c} h_{t-1}+b_{c}\right)$
- What the cell should remember given current input and previous hidden state, other things being equal
- tanh makes it between -1 and 1 .
- Now come the fun parts.

LSTM - anatomy

- Forget gate: $f_{t}=\sigma\left(W_{f} x_{t}+U_{f} h_{t-1}+b_{f}\right)$
- Sigmoid - between 0 and 1 , used to weight how much we're going to discount current memory state.
- x_{t} current input, h_{t-1} previous hidden state.
- (Weights have to be learned for each gate type!)

LSTM - anatomy

- Forget gate: $f_{t}=\sigma\left(W_{f} x_{t}+U_{f} h_{t-1}+b_{f}\right)$
- Sigmoid - between 0 and 1 , used to weight how much we're going to discount current memory state.
- x_{t} current input, h_{t-1} previous hidden state.
- (Weights have to be learned for each gate type!)
- Memory state: $C_{t}=i_{t} \odot \tilde{C}_{t}+f_{t} \odot \tilde{C}_{t-1}$
- What the cell is going to remember, given the discount of the forget gate of the previous memory state.

LSTM - anatomy

- Output gate: $o_{t}=\sigma\left(W_{o} x_{t}+U_{o} h_{t-1}+V_{o} C_{t}+b_{o}\right)$
- Now includes weights not only on x_{t} and h_{t-1}, but also $C_{t}-$ ie, how much the new memory state contributes to the next cell.

LSTM - anatomy

- Output gate: $o_{t}=\sigma\left(W_{o} x_{t}+U_{o} h_{t-1}+V_{o} C_{t}+b_{o}\right)$
- Now includes weights not only on x_{t} and h_{t-1}, but also $C_{t}-$ ie, how much the new memory state contributes to the next cell.
- Output: $h_{t}=o_{t} \odot \tanh \left(C_{t}\right)$ - then emit the new state for the next cell

LSTM - anatomy

- Output gate: $o_{t}=\sigma\left(W_{o} x_{t}+U_{o} h_{t-1}+V_{o} C_{t}+b_{o}\right)$
- Now includes weights not only on x_{t} and h_{t-1}, but also $C_{t}-$ ie, how much the new memory state contributes to the next cell.
- Output: $h_{t}=o_{t} \odot \tanh \left(C_{t}\right)$ - then emit the new state for the next cell

And then it's all a matter of training, simple, right?

Gates

- Each soft gate that we use is just another weight matrix that we apply to various inputs, then squash through a logistic function

Gates

- Each soft gate that we use is just another weight matrix that we apply to various inputs, then squash through a logistic function
- For example, if the value of the forget gate f is 0 , the memory state from the previous timestep $\left(C_{t-1}\right)$ is completely forgotten

Gates

- Each soft gate that we use is just another weight matrix that we apply to various inputs, then squash through a logistic function
- For example, if the value of the forget gate f is 0 , the memory state from the previous timestep $\left(C_{t-1}\right)$ is completely forgotten
- If $f=1$, we fully keep the memory state of the previous timestep

Gates

- Each soft gate that we use is just another weight matrix that we apply to various inputs, then squash through a logistic function
- For example, if the value of the forget gate f is 0 , the memory state from the previous timestep $\left(C_{t-1}\right)$ is completely forgotten
- If $f=1$, we fully keep the memory state of the previous timestep
- The value of f can be between 0 and 1 , so the memory decays

Gates

- Each soft gate that we use is just another weight matrix that we apply to various inputs, then squash through a logistic function
- For example, if the value of the forget gate f is 0 , the memory state from the previous timestep $\left(C_{t-1}\right)$ is completely forgotten
- If $f=1$, we fully keep the memory state of the previous timestep
- The value of f can be between 0 and 1 , so the memory decays
- That's a big difference over Elman networks / SRNs

Gated Recurrent Units (GRUs)

(a) Long Short-Term Memory

(b) Gated Recurrent Unit

Figure 1: Illustration of (a) LSTM and (b) gated recurrent units. (a) i,f and o are the input, forget and output gates, respectively. c and \tilde{c} denote the memory cell and the new memory cell content. (b) r and z are the reset and update gates, and h and h are the activation and the candidate activation.

- Gated recurrent units (GRUs) are very similar to LSTMs, but are a little simpler
- GRUs merge the forget and input gates into a single update gate
- GRUs also merge the hidden state and the cell state
- Both LSTMs and GRUs achieve similar performance on many tasks

Rube Goldberg Network

Further Reading

Overviews:

- https://www.reddit.com/r/MachineLearning/comments/44bxdj/scrn_vs_lstm/czp4hqr/
- https://colah.github.io/posts/2015-08-Understanding-LSTMs/
- https://medium.com/@shiyan/understanding-lstm-and-its-diagrams-37e2f46f1714
- http://deeplearning.net/tutorial/lstm.html
- http://arxiv.org/abs/1412.3555
- https:
//www.tensorflow.org/versions/master/tutorials/recurrent/index.html\#recurrent-neural-networks
- http://keras.io/layers/recurrent/
- https://drive.google.com/open?id=0B-aFax-9-qt3Sllodkpmc1MOMUk
- https://en.wikipedia.org/wiki/LSTM

Original Papers:

- Elman, Jeffrey L. 1990. Finding Structure in Time. Cognitive Science 14.179-211.
- Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation 9.1735-1780.
- Kyunghyun Cho, Bart van Merriënboer, Çağlar Gülçehre, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014).

