Formal Models of Language

Jon Dehdari and Asad Sayeed

October 31, 2016

Introduction

Hi !

Formal Languages

- Once Upon a Time...

Formal Languages

- Once Upon a Time...
- Mathematicians started to think about language...

Formal Languages

- Once Upon a Time...
- Mathematicians started to think about language...
- They used ideas from logic to represent linguistic objects...

Formal Languages

- Once Upon a Time...
- Mathematicians started to think about language...
- They used ideas from logic to represent linguistic objects...
- They had a craaaazy idea...

Formal Languages

- Once Upon a Time...
- Mathematicians started to think about language...
- They used ideas from logic to represent linguistic objects...
- They had a craaaazy idea...

Strings

What's a String?

- A string in this context is just a sequence of words

Strings

What's a String?

- A string in this context is just a sequence of words
- A formal language (L) is a subset of all the possible strings

Strings

What's a String?

- A string in this context is just a sequence of words
- A formal language (L) is a subset of all the possible strings
- An vocabulary (Σ, also sometimes called alphabet) here is a set of all the words in the language

Strings

What's a String?

- A string in this context is just a sequence of words
- A formal language (L) is a subset of all the possible strings
- An vocabulary (Σ, also sometimes called alphabet) here is a set of all the words in the language
- Words here don't need to correspond to words used for natural languages

Strings

What's a String?

- A string in this context is just a sequence of words
- A formal language (L) is a subset of all the possible strings
- An vocabulary (Σ, also sometimes called alphabet) here is a set of all the words in the language
- Words here don't need to correspond to words used for natural languages
- For example, this set:
is a perfectly valid vocabulary for a formal language.

Strings

What's a String?

- A string in this context is just a sequence of words
- A formal language (L) is a subset of all the possible strings
- An vocabulary (Σ, also sometimes called alphabet) here is a set of all the words in the language
- Words here don't need to correspond to words used for natural languages
- For example, this set:
is a perfectly valid vocabulary for a formal language. But we usually use boring symbols like $\{a, b, c\}$

Strings

What's a String?

- A string in this context is just a sequence of words
- A formal language (L) is a subset of all the possible strings
- An vocabulary (Σ, also sometimes called alphabet) here is a set of all the words in the language
- Words here don't need to correspond to words used for natural languages
- For example, this set:
is a perfectly valid vocabulary for a formal language. But we usually use boring symbols like $\{a, b, c\}$
- (Similar to musical/poetic form analysis)

Formal Grammar

- A formal grammar is a way of telling what a valid string is in a formal language
- Formal grammars can also generate valid strings

Formal Grammar

- A formal grammar is a way of telling what a valid string is in a formal language
- Formal grammars can also generate valid strings
- If two different grammars can generate/accept the same formal languages, then they have the same weak generative capacity

Formal Grammar

- A formal grammar is a way of telling what a valid string is in a formal language
- Formal grammars can also generate valid strings
- If two different grammars can generate/accept the same formal languages, then they have the same weak generative capacity
- If two different grammars can generate/accept the same structures as well, then they have the same strong generative capacity

Formal Language Hierarchy

	Formal Language
	Non-Turing-acceptable
$0:$	Recursively enumerable
	Recursive/ Decidable
$1:$	Context-sensitive
	Indexed
	Mildly context-sensitive
$2:$	Context-free
	Deterministic context-free
$3:$	Regular
	Finite

Formal Language Hierarchy

	Formal Language
	Non-Turing-acceptable
$0:$	Recursively enumerable
	Recursive/ Decidable
$1:$	Context-sensitive
	Indexed
	Mildly context-sensitive
$2:$	Context-free
	Deterministic context-free
$3:$	Regular
	Finite

This is extended from the older Chomsky hierarchy.

Formal Language Hierarchy

	Formal Language
	Non-Turing-acceptable
$0:$	Recursively enumerable
	Recursive/ Decidable
$1:$	Context-sensitive
	Indexed
	Mildly context-sensitive
$2:$	Context-free
	Deterministic context-free
$3:$	Regular
	Finite

This is extended from the older Chomsky hierarchy. We'll discuss the ones in boldface, as they're relevant to natural languages.

Why is this Stuff Relevant??

- Knowing what types of formal languages a grammar/automaton can generate \& accept will give you an idea of what phenomena in natural languages that they can handle

Why is this Stuff Relevant??

- Knowing what types of formal languages a grammar/automaton can generate \& accept will give you an idea of what phenomena in natural languages that they can handle
- For example: long-distance dependencies, complex reordering in machine translation, reduplication, etc.

Why is this Stuff Relevant??

- Knowing what types of formal languages a grammar/automaton can generate \& accept will give you an idea of what phenomena in natural languages that they can handle
- For example: long-distance dependencies, complex reordering in machine translation, reduplication, etc.
- You can also get an idea of how fast or slow it will take for a computer (or human) to process sequential stuff (like natural language!)

Finite Languages

- In a finite language, there are a finite (ie not infinite) number of valid sentences.
- Time: constant (through hash-table lookup)
- Memory: constant (duh)

Finite Languages

- In a finite language, there are a finite (ie not infinite) number of valid sentences.
- Time: constant (through hash-table lookup)
- Memory: constant (duh)
- For natural language, this would correspond to having a finite number of possible sentences

Are Natural Languages Finite??!!

- It sounds crazy to think that you could ever list all of the possible sentences of a natural language

Are Natural Languages Finite??!!

- It sounds crazy to think that you could ever list all of the possible sentences of a natural language
- Really, really crazy

Are Natural Languages Finite??!!

- It sounds crazy to think that you could ever list all of the possible sentences of a natural language
- Really, really crazy
- But...

Are Natural Languages Finite??!!

- It sounds crazy to think that you could ever list all of the possible sentences of a natural language
- Really, really crazy
- But...
- There's a big difference between a really large number and infinity

Are Natural Languages Finite??!!

- It sounds crazy to think that you could ever list all of the possible sentences of a natural language
- Really, really crazy
- But...
- There's a big difference between a really large number and infinity
- If a natural language has a vocabulary of, say, 100 million words ...

Are Natural Languages Finite??!!

- It sounds crazy to think that you could ever list all of the possible sentences of a natural language
- Really, really crazy
- But...
- There's a big difference between a really large number and infinity
- If a natural language has a vocabulary of, say, 100 million words ...
- And a sentence can have, say, up to 10,000 words in it, ...

Are Natural Languages Finite??!!

- It sounds crazy to think that you could ever list all of the possible sentences of a natural language
- Really, really crazy
- But...
- There's a big difference between a really large number and infinity
- If a natural language has a vocabulary of, say, 100 million words ...
- And a sentence can have, say, up to 10,000 words in it, ...
- Then there would be $10^{80,000}$ possible sentences

Are Natural Languages Finite??!!

- It sounds crazy to think that you could ever list all of the possible sentences of a natural language
- Really, really crazy
- But...
- There's a big difference between a really large number and infinity
- If a natural language has a vocabulary of, say, 100 million words ...
- And a sentence can have, say, up to 10,000 words in it, ...
- Then there would be $10^{80,000}$ possible sentences
- This number sounds way too big to be practical for either humans or computers to deal with!

Are Natural Languages Finite??!!

- It sounds crazy to think that you could ever list all of the possible sentences of a natural language
- Really, really crazy
- But...
- There's a big difference between a really large number and infinity
- If a natural language has a vocabulary of, say, 100 million words ...
- And a sentence can have, say, up to 10,000 words in it, ...
- Then there would be $10^{80,000}$ possible sentences
- This number sounds way too big to be practical for either humans or computers to deal with!
- But it's much smaller than infinity.

Are Natural Languages Finite??!!

- It sounds crazy to think that you could ever list all of the possible sentences of a natural language
- Really, really crazy
- But...
- There's a big difference between a really large number and infinity
- If a natural language has a vocabulary of, say, 100 million words ...
- And a sentence can have, say, up to 10,000 words in it, ...
- Then there would be $10^{80,000}$ possible sentences
- This number sounds way too big to be practical for either humans or computers to deal with!
- But it's much smaller than infinity.
- Much much smaller.

Are Natural Languages Finite??!!

- It sounds crazy to think that you could ever list all of the possible sentences of a natural language
- Really, really crazy
- But...
- There's a big difference between a really large number and infinity
- If a natural language has a vocabulary of, say, 100 million words ...
- And a sentence can have, say, up to 10,000 words in it, ...
- Then there would be $10^{80,000}$ possible sentences
- This number sounds way too big to be practical for either humans or computers to deal with!
- But it's much smaller than infinity.
- Much much smaller.
- (There's more discussion on the interwebs if you're interested)

(A digression on complexity)

- Processing different kinds of languages take different kinds of machines.

(A digression on complexity)

- Processing different kinds of languages take different kinds of machines.
- The automaton that recognizes a language represents an algorithm.

(A digression on complexity)

- Processing different kinds of languages take different kinds of machines.
- The automaton that recognizes a language represents an algorithm.
- Algorithms take up "space" units (memory to process) and "time" units (number of steps to do something).

(A digression on complexity)

- Processing different kinds of languages take different kinds of machines.
- The automaton that recognizes a language represents an algorithm.
- Algorithms take up "space" units (memory to process) and "time" units (number of steps to do something).
- We can characterize what this means in terms of the length of the input string, which we'll call n.

(A digression on complexity)

- Processing different kinds of languages take different kinds of machines.
- The automaton that recognizes a language represents an algorithm.
- Algorithms take up "space" units (memory to process) and "time" units (number of steps to do something).
- We can characterize what this means in terms of the length of the input string, which we'll call n.
- Then we have something called big- \mathcal{O} notation from computer science. To make a long story short:

$\mathcal{O}(1)$	"constant time"	\# units unrelated to input
$\mathcal{O}(n)$	"linear time"	\# units lin. proportional to input string
$\mathcal{O}\left(n^{2}\right)$	"quadratic time"	\# unites quadrat. prop. to input string
\ldots		

Regular Languages

- Ok, so maybe for now it's too difficult to list all possible sentences
- Let's assume that the vocabulary (Σ) is still fixed (or finite), but we can generate an infinite number of sentences from this fixed vocab
- Regular grammars have a fixed-length history, so they're limited in the types of long-distance phenomena they can handle

Regular Languages

- Ok, so maybe for now it's too difficult to list all possible sentences
- Let's assume that the vocabulary (Σ) is still fixed (or finite), but we can generate an infinite number of sentences from this fixed vocab
- Regular grammars have a fixed-length history, so they're limited in the types of long-distance phenomena they can handle
- For example: $\mathbf{a} \mathbf{a}^{\prime} \mathbf{b} \mathbf{b}^{\prime} \mathbf{c} \mathbf{c}^{\prime}$

Regular Languages

- Ok, so maybe for now it's too difficult to list all possible sentences
- Let's assume that the vocabulary (Σ) is still fixed (or finite), but we can generate an infinite number of sentences from this fixed vocab
- Regular grammars have a fixed-length history, so they're limited in the types of long-distance phenomena they can handle
- For example: $\mathbf{a} \mathbf{a}^{\prime} \mathbf{b} \mathbf{b}^{\prime} \mathbf{c} \mathbf{c}^{\prime}$
- Processing regular languages can be done in linear time $(O(n))$, with a constant size of memory $(O(1))$

Deterministic Context-Free Languages

- Deterministic context-free (DCF) languages include longer-distance phenomena
- DCF grammars have a full-length history, as long as there's no ambiguity (ie. it can't backtrack)

Deterministic Context-Free Languages

- Deterministic context-free (DCF) languages include longer-distance phenomena
- DCF grammars have a full-length history, as long as there's no ambiguity (ie. it can't backtrack)
- Processing DCF languages can be done in linear time $(\mathcal{O}(n))$, with linear memory usage $(O(n))$

Context-Free Languages

- Context-free languages include phenomena like center embedding
- For example: abcccol $\mathbf{b}^{\prime} \mathbf{a}^{\prime}$

Context-Free Languages

- Context-free languages include phenomena like center embedding
- For example: $\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{c}^{\prime} \mathbf{b}^{\prime} \mathbf{a}^{\prime}$
- Context-free grammars have a full-length history, and they can backtrack for ambiguous sentences

Context-Free Languages

- Context-free languages include phenomena like center embedding
- For example: abcccol $\mathbf{b}^{\prime} \mathbf{a}^{\prime}$
- Context-free grammars have a full-length history, and they can backtrack for ambiguous sentences
- Processing CF languages can be done in about cubic time $\left(O\left(n^{3}\right)\right)$, with linear memory usage $(\mathcal{O}(n))$

Mildly Context-Sensitive Languages

- Mildly context-sensitive (MCS) languages include phenomena like reduplication and cross-serial dependencies.
- Example: $\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{a}^{\prime} \mathbf{b}^{\prime} \mathbf{c}^{\prime}$

Mildly Context-Sensitive Languages

- Mildly context-sensitive (MCS) languages include phenomena like reduplication and cross-serial dependencies.
- Example: abcad b' \mathbf{c}^{\prime}
...das mer d'chind em Hans es huus lönd hälfe aastriiche
\ldots. that we the children-ACC Hans-DAT house-ACC let help paint
'. . that we let the children help Hans paint the house'

Mildly Context-Sensitive Languages

- Mildly context-sensitive (MCS) languages include phenomena like reduplication and cross-serial dependencies.
- Example: abcad b' \mathbf{c}^{\prime}
...das mer d'chind em Hans es huus lönd hälfe aastriiche
... that we the children-ACC Hans-DAT house-ACC let help paint
' . . that we let the children help Hans paint the house'
- Processing MCS languages can be done in about $\mathcal{O}\left(n^{6}\right)$ time, with quadratic memory usage $\left(\mathcal{O}\left(n^{2}\right)\right)$

Mildly Context-Sensitive Languages

- Mildly context-sensitive (MCS) languages include phenomena like reduplication and cross-serial dependencies.
- Example: abcad b' \mathbf{c}^{\prime}
...das mer d'chind em Hans es huus lönd hälfe aastriiche
\ldots. that we the children-ACC Hans-DAT house-ACC let help paint
' . . . that we let the children help Hans paint the house'
- Processing MCS languages can be done in about $\mathcal{O}\left(n^{6}\right)$ time, with quadratic memory usage $\left(\mathcal{O}\left(n^{2}\right)\right)$
- Mildly context-sensitive is very different from context-sensitive, which is much more powerful
- Some grammar formalisms that can handle MCS langs:
- Tree Adjoining Grammar (TAG)
- Combinatory Categorial Grammar (CCG)
- Linear Indexed Grammars (LIG) (easy to understand)
- Head Grammars (HG)

Recursively Enumerable Languages

- Recursively enumerable languages allow any string that a computer (or equivalent device) can generate/accept
- There's no guarantee that the computer will ever stop processing the sentence
- Essentially any word can occur in any place in the sentence

Recursively Enumerable Languages

- Recursively enumerable languages allow any string that a computer (or equivalent device) can generate/accept
- There's no guarantee that the computer will ever stop processing the sentence
- Essentially any word can occur in any place in the sentence
- Some grammar formalisms that allow recursively enumerable languages include:
- Chomskyan grammars (due to transformations / moves)
- Lexical Functional Grammar (LFG)
- Head-driven Phrase Structure Grammar (HPSG) (due to Slash features)

Recursively Enumerable Languages

- Recursively enumerable languages allow any string that a computer (or equivalent device) can generate/accept
- There's no guarantee that the computer will ever stop processing the sentence
- Essentially any word can occur in any place in the sentence
- Some grammar formalisms that allow recursively enumerable languages include:
- Chomskyan grammars (due to transformations / moves)
- Lexical Functional Grammar (LFG)
- Head-driven Phrase Structure Grammar (HPSG) (due to Slash features)
- Note that these grammar formalisms can place some restrictions on word order, but they still accept/generate recursively enumerable languages.

Recursively Enumerable Languages

- Recursively enumerable languages allow any string that a computer (or equivalent device) can generate/accept
- There's no guarantee that the computer will ever stop processing the sentence
- Essentially any word can occur in any place in the sentence
- Some grammar formalisms that allow recursively enumerable languages include:
- Chomskyan grammars (due to transformations / moves)
- Lexical Functional Grammar (LFG)
- Head-driven Phrase Structure Grammar (HPSG) (due to Slash features)
- Note that these grammar formalisms can place some restrictions on word order, but they still accept/generate recursively enumerable languages. How is that so?

Recursively Enumerable Languages

- Recursively enumerable languages allow any string that a computer (or equivalent device) can generate/accept
- There's no guarantee that the computer will ever stop processing the sentence
- Essentially any word can occur in any place in the sentence
- Some grammar formalisms that allow recursively enumerable languages include:
- Chomskyan grammars (due to transformations / moves)
- Lexical Functional Grammar (LFG)
- Head-driven Phrase Structure Grammar (HPSG) (due to Slash features)
- Note that these grammar formalisms can place some restrictions on word order, but they still accept/generate recursively enumerable languages. How is that so? Additional grammar rules can work around such restrictions to accept/generate the string.

But that's just strings. . .

But that's just strings. . .

- Why do we care how the strings are structured?

But that's just strings. . .

- Why do we care how the strings are structured?
- Because different structures enable different computations!

But that's just strings. . .

- Why do we care how the strings are structured?
- Because different structures enable different computations!
- For example: context-free languages harder to machine-learn than regular languages.

Meaning: something to do with language?

Meaning: something to do with language?

- In some sense, we want to get at the meaning in language.

Meaning: something to do with language?

- In some sense, we want to get at the meaning in language.
- Implicit or explicit meaning?

Meaning: something to do with language?

- In some sense, we want to get at the meaning in language.
- Implicit or explicit meaning?
- Machine learning: perhaps just map structures in one language to structures in another? No meaning required.

Meaning: something to do with language?

- In some sense, we want to get at the meaning in language.
- Implicit or explicit meaning?
- Machine learning: perhaps just map structures in one language to structures in another? No meaning required.
- Computer vision - maybe we really want explicit descriptions of objects in human language.

Lexical representation

- Words have meanings. How do we describe what a word means?

Lexical representation

- Words have meanings. How do we describe what a word means?
- First attempt: use "features."

Lexical representation

- Words have meanings. How do we describe what a word means?
- First attempt: use "features."
- "bachelor" $=+$ male, +adult, -married

Lexical representation

- Words have meanings. How do we describe what a word means?
- First attempt: use "features."
- "bachelor" $=+$ male, + adult, -married
- "husband" $=+$ male, + adult, + married

Lexical representation

- Words have meanings. How do we describe what a word means?
- First attempt: use "features."
- "bachelor" $=+$ male, + adult, -married
- "husband" $=+$ male, + adult, + married
- "bachelor" $=$ "husband" $\times(-$ married $)$

Lexical representation

- Words have meanings. How do we describe what a word means?
- First attempt: use "features."
- "bachelor" $=+$ male, + adult, -married
- "husband" $=+$ male, + adult, + married
- "bachelor" $=$ "husband" $\times($-married $)$
- Dictionary problem: what is the meaning of a feature? Define words in terms of other words?

Compositional and sentence meaning

- But sentences have meanings too!

Compositional and sentence meaning

- But sentences have meanings too!
- "The kitten is playing the violin" - DOER: kitten, THING DONE TO: violin, ACTION: play

Compositional and sentence meaning

- But sentences have meanings too!
- "The kitten is playing the violin" - DOER: kitten, THING DONE TO: violin, ACTION: play
- Common way of representing this: first-order predicate calculus.

Compositional and sentence meaning

- But sentences have meanings too!
- "The kitten is playing the violin" - DOER: kitten, THING DONE TO: violin, ACTION: play
- Common way of representing this: first-order predicate calculus.
- $\exists x \exists y \operatorname{kitten}(x) \&$ violin $(y) \& p l a y(x, y)$

Compositional and sentence meaning

- But sentences have meanings too!
- "The kitten is playing the violin" - DOER: kitten, THING DONE TO: violin, ACTION: play
- Common way of representing this: first-order predicate calculus.
- $\exists x \exists y \operatorname{kitten}(x) \&$ violin $(y) \& p l a y(x, y)$
- Does this really represent the meaning relationships well?

Compositional and sentence meaning

- But sentences have meanings too!
- "The kitten is playing the violin" - DOER: kitten, THING DONE TO: violin, ACTION: play
- Common way of representing this: first-order predicate calculus.
- $\exists x \exists y \operatorname{kitten}(x) \&$ violin $(y) \& p l a y(x, y)$
- Does this really represent the meaning relationships well?
- The main question of formal semantics: what do we need to reason about language?

