1/1

Formal Models of Language

Jon Dehdari and Asad Sayeed

October 31, 2016

http://jon.dehdari.org
http://www.coli.uni-saarland.de/~asayeed

‘ntro!uctlon

Hil

Formal Languages

e Once Upon a Time...

Formal Languages

e Once Upon a Time...

e Mathematicians started to think about language...

Formal Languages

e Once Upon a Time...
e Mathematicians started to think about language...

e They used ideas from logic to represent linguistic objects...

Formal Languages

Once Upon a Time...
Mathematicians started to think about language...
They used ideas from logic to represent linguistic objects...

They had a craaaazy idea...

Formal Languages

Once Upon a Time...
Mathematicians started to think about language...

They used ideas from logic to represent linguistic objects...

fa s
b

-

They had a craaaazy idea...

gty
IT'S ALL STRINGS!

memegenerator.net

Strings
What's a String?

e A string in this context is just a sequence of words

Strings
What's a String?

e A string in this context is just a sequence of words

¢ A formal language (L) is a subset of all the possible strings

Strings
What's a String?

e A string in this context is just a sequence of words
¢ A formal language (L) is a subset of all the possible strings

e An vocabulary (X, also sometimes called alphabet) here is a
set of all the words in the language

Strings

What's a String?

e A string in this context is just a sequence of words

¢ A formal language (L) is a subset of all the possible strings

e An vocabulary (X, also sometimes called alphabet) here is a
set of all the words in the language

e Words here don't need to correspond to words used for
natural languages

Strings

What's a String?

A string in this context is just a sequence of words
A formal language (L) is a subset of all the possible strings

An vocabulary (X, also sometimes called alphabet) here is a
set of all the words in the language

Words here don't need to correspond to words used for
natural languages

For example, this set:

is a perfectly valid vocabulary for a formal language.

Strings

What's a String?

A string in this context is just a sequence of words
A formal language (L) is a subset of all the possible strings

An vocabulary (X, also sometimes called alphabet) here is a
set of all the words in the language

Words here don't need to correspond to words used for
natural languages

For example, this set:

is a perfectly valid vocabulary for a formal language. But we
usually use boring symbols like {a, b, c}

Strings

What's a String?

A string in this context is just a sequence of words
A formal language (L) is a subset of all the possible strings

An vocabulary (X, also sometimes called alphabet) here is a
set of all the words in the language

Words here don't need to correspond to words used for
natural languages

For example, this set:

is a perfectly valid vocabulary for a formal language. But we
usually use boring symbols like {a, b, c}

(Similar to musical/poetic form analysis)

Formal Grammar

e A formal grammar is a way of telling what a valid string is in
a formal language

e Formal grammars can also generate valid strings

Formal Grammar

e A formal grammar is a way of telling what a valid string is in
a formal language

e Formal grammars can also generate valid strings

e If two different grammars can generate/accept the same
formal languages, then they have the same weak generative
capacity

Formal Grammar

A formal grammar is a way of telling what a valid string is in
a formal language

Formal grammars can also generate valid strings

If two different grammars can generate/accept the same
formal languages, then they have the same weak generative
capacity

If two different grammars can generate/accept the same

structures as well, then they have the same strong
generative capacity

Formal Language Hierarchy

Formal Language

Non-Turing-acceptable

0: Recursively enumerable

Recursive/ Decidable

1: Context-sensitive

Indexed

Mildly context-sensitive

2: Context-free

Deterministic context-free

3: Regular

Finite

Formal Language Hierarchy

] Formal Language

Non-Turing-acceptable

0: Recursively enumerable

Recursive/ Decidable

1: Context-sensitive

Indexed

Mildly context-sensitive

2: Context-free

Deterministic context-free

3: Regular

Finite

This is extended from the older Chomsky hierarchy.

Formal Language Hierarchy

] Formal Language ‘

Non-Turing-acceptable
0: Recursively enumerable
Recursive/ Decidable
1: Context-sensitive

Indexed
Mildly context-sensitive
2: Context-free
Deterministic context-free
3: Regular
Finite

This is extended from the older Chomsky hierarchy. We'll discuss the ones in
boldface, as they're relevant to natural languages.

Why is this Stuff Relevant??

e Knowing what types of formal languages a
grammar/automaton can generate & accept will give you an
idea of what phenomena in natural languages that they can
handle

Why is this Stuff Relevant??

e Knowing what types of formal languages a
grammar/automaton can generate & accept will give you an
idea of what phenomena in natural languages that they can
handle

e For example: long-distance dependencies, complex reordering
in machine translation, reduplication, etc.

Why is this Stuff Relevant??

e Knowing what types of formal languages a
grammar/automaton can generate & accept will give you an
idea of what phenomena in natural languages that they can
handle

e For example: long-distance dependencies, complex reordering
in machine translation, reduplication, etc.

e You can also get an idea of how fast or slow it will take for a
computer (or human) to process sequential stuff (like natural
language!)

Finite Languages

e In a finite language, there are a finite (ie not infinite) number
of valid sentences.
e Time: constant (through hash-table lookup)

e Memory: constant (duh)

Finite Languages

In a finite language, there are a finite (ie not infinite) number
of valid sentences.

Time: constant (through hash-table lookup)
Memory: constant (duh)

For natural language, this would correspond to having a finite
number of possible sentences

Are Natural Languages Finite??!!

e It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf

Are Natural Languages Finite??!!

e It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

e Really, really crazy

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf

Are Natural Languages Finite??!!

e It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

e Really, really crazy
e But...

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf

Are Natural Languages Finite??!!

It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

Really, really crazy
But...

There's a big difference between a really large number and
infinity

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf

Are Natural Languages Finite??!!

It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

Really, really crazy

But...

There's a big difference between a really large number and
infinity

If a natural language has a vocabulary of, say, 100 million words ...

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf

Are Natural Languages Finite??!!

It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

Really, really crazy
But...

There's a big difference between a really large number and
infinity

If a natural language has a vocabulary of, say, 100 million words ...

And a sentence can have, say, up to 10,000 words in it, ...

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf

Are Natural Languages Finite??!!

It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

Really, really crazy
But...

There's a big difference between a really large number and
infinity

If a natural language has a vocabulary of, say, 100 million words ...

And a sentence can have, say, up to 10,000 words in it, ...

Then there would be 1080990 possible sentences

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf

Are Natural Languages Finite??!!

It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

Really, really crazy
But...

There's a big difference between a really large number and
infinity

If a natural language has a vocabulary of, say, 100 million words ...

And a sentence can have, say, up to 10,000 words in it, ...
Then there would be 1080090 possible sentences

This number sounds way too big to be practical for either
humans or computers to deal with!

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf

Are Natural Languages Finite??!!

It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

Really, really crazy
But...

There's a big difference between a really large number and
infinity

If a natural language has a vocabulary of, say, 100 million words ...

And a sentence can have, say, up to 10,000 words in it, ...
Then there would be 1080090 possible sentences

This number sounds way too big to be practical for either
humans or computers to deal with!

But it’s much smaller than infinity.

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf

Are Natural Languages Finite??!!

It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

Really, really crazy
But...

There's a big difference between a really large number and
infinity

If a natural language has a vocabulary of, say, 100 million words ...

And a sentence can have, say, up to 10,000 words in it, ...
Then there would be 1080090 possible sentences

This number sounds way too big to be practical for either
humans or computers to deal with!

But it’s much smaller than infinity.

Much much smaller.

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf

Are Natural Languages Finite??!!

It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

Really, really crazy
But...

There's a big difference between a really large number and
infinity

If a natural language has a vocabulary of, say, 100 million words ...

And a sentence can have, say, up to 10,000 words in it, ...
Then there would be 1080090 possible sentences

This number sounds way too big to be practical for either
humans or computers to deal with!

But it’s much smaller than infinity.

Much much smaller.

(There’s more discussion on the interwebs if you're interested)

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf

(A digression on complexity)

e Processing different kinds of languages take different kinds of
machines.

10/1

(A digression on complexity)

e Processing different kinds of languages take different kinds of
machines.

e The automaton that recognizes a language represents an
algorithm.

10/1

(A digression on complexity)

e Processing different kinds of languages take different kinds of
machines.

e The automaton that recognizes a language represents an
algorithm.

e Algorithms take up “space” units (memory to process) and
“time” units (number of steps to do something).

10/1

10/1

(A digression on complexity)

Processing different kinds of languages take different kinds of
machines.

The automaton that recognizes a language represents an
algorithm.

Algorithms take up “space” units (memory to process) and
“time” units (number of steps to do something).

We can characterize what this means in terms of the length of
the input string, which we'll call n.

10/1

(A digression on complexity)

Processing different kinds of languages take different kinds of
machines.

The automaton that recognizes a language represents an
algorithm.

Algorithms take up “space” units (memory to process) and
“time” units (number of steps to do something).

We can characterize what this means in terms of the length of

the input string, which we'll call n.

Then we have something called big-O notation from computer

science. To make a long story short:

o(1)
O(n)
o(n®)

“constant time”
“linear time"
“quadratic time”

units unrelated to input
units lin. proportional to input string
7 unites quadrat. prop. to input string

Regular Languages

e Ok, so maybe for now it's too difficult to list all possible
sentences

e Let's assume that the vocabulary (X) is still fixed (or finite),
but we can generate an infinite number of sentences from this
fixed vocab

e Regular grammars have a fixed-length history, so they're
limited in the types of long-distance phenomena they can
handle

11/1

11/1

Regular Languages

Ok, so maybe for now it's too difficult to list all possible
sentences

Let's assume that the vocabulary (X) is still fixed (or finite),
but we can generate an infinite number of sentences from this
fixed vocab

Regular grammars have a fixed-length history, so they're
limited in the types of long-distance phenomena they can
handle

For example: aa’ b b’ c ¢

11/1

Regular Languages

Ok, so maybe for now it's too difficult to list all possible
sentences

Let's assume that the vocabulary (X) is still fixed (or finite),
but we can generate an infinite number of sentences from this
fixed vocab

Regular grammars have a fixed-length history, so they're
limited in the types of long-distance phenomena they can
handle

For example: aa’ b b’ c ¢

Processing regular languages can be done in linear time
, with a constant size of memory

Deterministic Context-Free Languages

e Deterministic context-free (DCF) languages include
longer-distance phenomena

e DCF grammars have a full-length history, as long as there’s no
ambiguity (ie. it can't backtrack)

12/1

Deterministic Context-Free Languages

e Deterministic context-free (DCF) languages include
longer-distance phenomena

e DCF grammars have a full-length history, as long as there’s no
ambiguity (ie. it can't backtrack)

e Processing DCF languages can be done in linear time ,
with linear memory usage

12/1

Context-Free Languages

o Context-free languages include phenomena like center
embedding

e For example: abecc' b’ @

13/1

Context-Free Languages

o Context-free languages include phenomena like center
embedding

e For example: abecc' b’ @

o Context-free grammars have a full-length history, and they can
backtrack for ambiguous sentences

13 /1

Context-Free Languages

Context-free languages include phenomena like center
embedding

For example: ab c ¢’ b’ a

Context-free grammars have a full-length history, and they can
backtrack for ambiguous sentences

Processing CF languages can be done in about cubic time
, with linear memory usage

13 /1

Mildly Context-Sensitive Languages

e Mildly context-sensitive (MCS) languages include phenomena
like reduplication and cross-serial dependencies.

e Example: abca b’ ¢

14 /1

https://en.wikipedia.org/wiki/Tree-adjoining_grammar
https://en.wikipedia.org/wiki/Combinatory_categorial_grammar
https://en.wikipedia.org/wiki/Indexed_grammar#Linear_indexed_grammars
https://en.wikipedia.org/wiki/Head_grammar

Mildly Context-Sensitive Languages

e Mildly context-sensitive (MCS) languages include phenomena
like reduplication and cross-serial dependencies.

e Example: abca b’ ¢
...das mer d’chind em Hans es huus 16nd hélfe aastriiche

...that we the child‘ren—ACC Hans‘-DAT house‘—ACC le‘t help paint
\] |

‘...that we let the children help Hans paint the house’

14 /1

https://en.wikipedia.org/wiki/Tree-adjoining_grammar
https://en.wikipedia.org/wiki/Combinatory_categorial_grammar
https://en.wikipedia.org/wiki/Indexed_grammar#Linear_indexed_grammars
https://en.wikipedia.org/wiki/Head_grammar

Mildly Context-Sensitive Languages

e Mildly context-sensitive (MCS) languages include phenomena
like reduplication and cross-serial dependencies.

e Example: abca b’ ¢
...das mer d’chind em Hans es huus 16nd hélfe aastriiche

...that we the child‘ren—ACC Hans‘—DAT house‘—ACC le‘t help paint
\] |

‘...that we let the children help Hans paint the house’

e Processing MCS languages can be done in about O(n®°) time,
with quadratic memory usage

14 /1

https://en.wikipedia.org/wiki/Tree-adjoining_grammar
https://en.wikipedia.org/wiki/Combinatory_categorial_grammar
https://en.wikipedia.org/wiki/Indexed_grammar#Linear_indexed_grammars
https://en.wikipedia.org/wiki/Head_grammar

14 /1

Mildly Context-Sensitive Languages

Mildly context-sensitive (MCS) languages include phenomena
like reduplication and cross-serial dependencies.

Example: abca’ b’ ¢

...das mer d’chind em Hans es huus 16nd hélfe aastriiche

...that we the child‘ren—ACC Hans‘—DAT house‘—ACC le‘t help paint
\] |

‘...that we let the children help Hans paint the house’

Processing MCS languages can be done in about O(n®) time,
with quadratic memory usage

Mildly context-sensitive is very different from context-sensitive,
which is much more powerful

Some grammar formalisms that can handle MCS langs:
e Tree Adjoining Grammar (TAG)
e Combinatory Categorial Grammar (CCG)
e Linear Indexed Grammars (LIG) (easy to understand)
e Head Grammars (HG)

https://en.wikipedia.org/wiki/Tree-adjoining_grammar
https://en.wikipedia.org/wiki/Combinatory_categorial_grammar
https://en.wikipedia.org/wiki/Indexed_grammar#Linear_indexed_grammars
https://en.wikipedia.org/wiki/Head_grammar

Recursively Enumerable Languages

e Recursively enumerable languages allow any string that a
computer (or equivalent device) can generate/accept

e There's no guarantee that the computer will ever stop
processing the sentence

o Essentially any word can occur in any place in the sentence

15 /1

https://en.wikipedia.org/wiki/Transformational_grammar
https://en.wikipedia.org/wiki/Lexical_functional_grammar
https://en.wikipedia.org/wiki/Head-driven_phrase_structure_grammar

15 /1

Recursively Enumerable Languages

Recursively enumerable languages allow any string that a
computer (or equivalent device) can generate/accept
There's no guarantee that the computer will ever stop
processing the sentence

Essentially any word can occur in any place in the sentence

Some grammar formalisms that allow recursively enumerable
languages include:
e Chomskyan grammars (due to transformations / moves)
e Lexical Functional Grammar (LFG)
e Head-driven Phrase Structure Grammar (HPSG) (due to
SLASH features)

https://en.wikipedia.org/wiki/Transformational_grammar
https://en.wikipedia.org/wiki/Lexical_functional_grammar
https://en.wikipedia.org/wiki/Head-driven_phrase_structure_grammar

15 /1

Recursively Enumerable Languages

Recursively enumerable languages allow any string that a
computer (or equivalent device) can generate/accept
There's no guarantee that the computer will ever stop
processing the sentence

Essentially any word can occur in any place in the sentence
Some grammar formalisms that allow recursively enumerable
languages include:

e Chomskyan grammars (due to transformations / moves)

e Lexical Functional Grammar (LFG)

e Head-driven Phrase Structure Grammar (HPSG) (due to

SLASH features)

Note that these grammar formalisms can place some
restrictions on word order, but they still accept/generate
recursively enumerable languages.

https://en.wikipedia.org/wiki/Transformational_grammar
https://en.wikipedia.org/wiki/Lexical_functional_grammar
https://en.wikipedia.org/wiki/Head-driven_phrase_structure_grammar

15 /1

Recursively Enumerable Languages

Recursively enumerable languages allow any string that a
computer (or equivalent device) can generate/accept
There's no guarantee that the computer will ever stop
processing the sentence

Essentially any word can occur in any place in the sentence
Some grammar formalisms that allow recursively enumerable
languages include:

e Chomskyan grammars (due to transformations / moves)

e Lexical Functional Grammar (LFG)

e Head-driven Phrase Structure Grammar (HPSG) (due to

SLASH features)

Note that these grammar formalisms can place some
restrictions on word order, but they still accept/generate
recursively enumerable languages. How is that so?

https://en.wikipedia.org/wiki/Transformational_grammar
https://en.wikipedia.org/wiki/Lexical_functional_grammar
https://en.wikipedia.org/wiki/Head-driven_phrase_structure_grammar

15 /1

Recursively Enumerable Languages

Recursively enumerable languages allow any string that a
computer (or equivalent device) can generate/accept

There's no guarantee that the computer will ever stop
processing the sentence

Essentially any word can occur in any place in the sentence
Some grammar formalisms that allow recursively enumerable
languages include:

e Chomskyan grammars (due to transformations / moves)

e Lexical Functional Grammar (LFG)

e Head-driven Phrase Structure Grammar (HPSG) (due to

SLASH features)

Note that these grammar formalisms can place some
restrictions on word order, but they still accept/generate
recursively enumerable languages. How is that so? Additional
grammar rules can work around such restrictions to
accept/generate the string.

https://en.wikipedia.org/wiki/Transformational_grammar
https://en.wikipedia.org/wiki/Lexical_functional_grammar
https://en.wikipedia.org/wiki/Head-driven_phrase_structure_grammar

But that's just strings. ..

16 /1

http://science.howstuffworks.com/science-vs-myth/everyday-myths/string-theory.htm

But that's just strings. ..

e Why do we care how the strings are structured?

16 /1

http://science.howstuffworks.com/science-vs-myth/everyday-myths/string-theory.htm

But that's just strings. ..

e Why do we care how the strings are structured?

e Because different structures enable different computations!

16 /1

http://science.howstuffworks.com/science-vs-myth/everyday-myths/string-theory.htm

But that's just strings. ..

e Why do we care how the strings are structured?
e Because different structures enable different computations!

e For example: context-free languages harder to machine-learn
than regular languages.

16 /1

http://science.howstuffworks.com/science-vs-myth/everyday-myths/string-theory.htm

Meaning: something to do with language?

17 /1

Meaning: something to do with language?

e In some sense, we want to get at the meaning in language.

17 /1

Meaning: something to do with language?

e In some sense, we want to get at the meaning in language.
e Implicit or explicit meaning?

17 /1

Meaning: something to do with language?

e In some sense, we want to get at the meaning in language.
e Implicit or explicit meaning?
e Machine learning: perhaps just map structures in one language
to structures in another? No meaning required.

17 /1

Meaning: something to do with language?

e In some sense, we want to get at the meaning in language.
e Implicit or explicit meaning?
e Machine learning: perhaps just map structures in one language
to structures in another? No meaning required.
e Computer vision — maybe we really want explicit descriptions
of objects in human language.

17 /1

Lexical representation

e Words have meanings. How do we describe what a word
means?

18/1

Lexical representation

e Words have meanings. How do we describe what a word
means?

e First attempt: use “features.”

18/1

Lexical representation

e Words have meanings. How do we describe what a word
means?

e First attempt: use “features.”
e “bachelor” = +male, +adult, -married

18 /1

Lexical representation

e Words have meanings. How do we describe what a word
means?
e First attempt: use “features.”

e “bachelor” = +male, +adult, -married
e "husband” = +male, +adult, +married

18 /1

Lexical representation

e Words have meanings. How do we describe what a word
means?

e First attempt: use “features.”

e “bachelor” = +male, +adult, -married
e “husband” = +male, +adult, +married
e “bachelor” = “husband” x (-married)

18/1

Lexical representation

e Words have meanings. How do we describe what a word
means?

e First attempt: use “features.”

e “bachelor” = +male, +adult, -married
e “husband” = +male, +adult, +married
e “bachelor” = “husband” x (-married)

e Dictionary problem: what is the meaning of a feature? Define
words in terms of other words?

18 /1

Compositional and sentence meaning

e But sentences have meanings too!

19 /1

Compositional and sentence meaning

e But sentences have meanings too!

e “The kitten is playing the violin” — DOER: kitten, THING
DONE TO: violin, ACTION: play

19 /1

Compositional and sentence meaning

e But sentences have meanings too!
e “The kitten is playing the violin” — DOER: kitten, THING
DONE TO: violin, ACTION: play

e Common way of representing this: first-order predicate
calculus.

19 /1

Compositional and sentence meaning

e But sentences have meanings too!
e “The kitten is playing the violin” — DOER: kitten, THING
DONE TO: violin, ACTION: play

e Common way of representing this: first-order predicate
calculus.
o IxIykitten(x)&violin(y)&play(x, y)

19 /1

Compositional and sentence meaning

e But sentences have meanings too!
e “The kitten is playing the violin” — DOER: kitten, THING
DONE TO: violin, ACTION: play
e Common way of representing this: first-order predicate
calculus.
o IxIykitten(x)&violin(y)&play(x, y)
e Does this really represent the meaning relationships well?

19 /1

19 /1

Compositional and sentence meaning

But sentences have meanings too!

“The kitten is playing the violin” — DOER: kitten, THING
DONE TO: violin, ACTION: play
Common way of representing this: first-order predicate
calculus.

o IxIykitten(x)&violin(y)&play(x, y)

e Does this really represent the meaning relationships well?
The main question of formal semantics: what do we need to
reason about language?

