
Formal Models of Language

Jon Dehdari and Asad Sayeed

October 31, 2016

1 / 1

http://jon.dehdari.org
http://www.coli.uni-saarland.de/~asayeed


Introduction

Hi!

2 / 1



Formal Languages

• Once Upon a Time...

• Mathematicians started to think about language...

• They used ideas from logic to represent linguistic objects...

• They had a craaaazy idea...

3 / 1



Formal Languages

• Once Upon a Time...

• Mathematicians started to think about language...

• They used ideas from logic to represent linguistic objects...

• They had a craaaazy idea...

3 / 1



Formal Languages

• Once Upon a Time...

• Mathematicians started to think about language...

• They used ideas from logic to represent linguistic objects...

• They had a craaaazy idea...

3 / 1



Formal Languages

• Once Upon a Time...

• Mathematicians started to think about language...

• They used ideas from logic to represent linguistic objects...

• They had a craaaazy idea...

3 / 1



Formal Languages

• Once Upon a Time...

• Mathematicians started to think about language...

• They used ideas from logic to represent linguistic objects...

• They had a craaaazy idea...

3 / 1



Strings

What’s a String?

• A string in this context is just a sequence of words

• A formal language (L) is a subset of all the possible strings

• An vocabulary (Σ, also sometimes called alphabet) here is a
set of all the words in the language

• Words here don’t need to correspond to words used for
natural languages

• For example, this set:

{ , , }
is a perfectly valid vocabulary for a formal language. But we
usually use boring symbols like {a, b, c}

• (Similar to musical/poetic form analysis)

4 / 1



Strings

What’s a String?

• A string in this context is just a sequence of words

• A formal language (L) is a subset of all the possible strings

• An vocabulary (Σ, also sometimes called alphabet) here is a
set of all the words in the language

• Words here don’t need to correspond to words used for
natural languages

• For example, this set:

{ , , }
is a perfectly valid vocabulary for a formal language. But we
usually use boring symbols like {a, b, c}

• (Similar to musical/poetic form analysis)

4 / 1



Strings

What’s a String?

• A string in this context is just a sequence of words

• A formal language (L) is a subset of all the possible strings

• An vocabulary (Σ, also sometimes called alphabet) here is a
set of all the words in the language

• Words here don’t need to correspond to words used for
natural languages

• For example, this set:

{ , , }
is a perfectly valid vocabulary for a formal language. But we
usually use boring symbols like {a, b, c}

• (Similar to musical/poetic form analysis)

4 / 1



Strings

What’s a String?

• A string in this context is just a sequence of words

• A formal language (L) is a subset of all the possible strings

• An vocabulary (Σ, also sometimes called alphabet) here is a
set of all the words in the language

• Words here don’t need to correspond to words used for
natural languages

• For example, this set:

{ , , }
is a perfectly valid vocabulary for a formal language. But we
usually use boring symbols like {a, b, c}

• (Similar to musical/poetic form analysis)

4 / 1



Strings

What’s a String?

• A string in this context is just a sequence of words

• A formal language (L) is a subset of all the possible strings

• An vocabulary (Σ, also sometimes called alphabet) here is a
set of all the words in the language

• Words here don’t need to correspond to words used for
natural languages

• For example, this set:

{ , , }
is a perfectly valid vocabulary for a formal language.

But we
usually use boring symbols like {a, b, c}

• (Similar to musical/poetic form analysis)

4 / 1



Strings

What’s a String?

• A string in this context is just a sequence of words

• A formal language (L) is a subset of all the possible strings

• An vocabulary (Σ, also sometimes called alphabet) here is a
set of all the words in the language

• Words here don’t need to correspond to words used for
natural languages

• For example, this set:

{ , , }
is a perfectly valid vocabulary for a formal language. But we
usually use boring symbols like {a, b, c}

• (Similar to musical/poetic form analysis)

4 / 1



Strings

What’s a String?

• A string in this context is just a sequence of words

• A formal language (L) is a subset of all the possible strings

• An vocabulary (Σ, also sometimes called alphabet) here is a
set of all the words in the language

• Words here don’t need to correspond to words used for
natural languages

• For example, this set:

{ , , }
is a perfectly valid vocabulary for a formal language. But we
usually use boring symbols like {a, b, c}

• (Similar to musical/poetic form analysis)

4 / 1



Formal Grammar

• A formal grammar is a way of telling what a valid string is in
a formal language

• Formal grammars can also generate valid strings

• If two different grammars can generate/accept the same
formal languages, then they have the same weak generative
capacity

• If two different grammars can generate/accept the same
structures as well, then they have the same strong
generative capacity

5 / 1



Formal Grammar

• A formal grammar is a way of telling what a valid string is in
a formal language

• Formal grammars can also generate valid strings

• If two different grammars can generate/accept the same
formal languages, then they have the same weak generative
capacity

• If two different grammars can generate/accept the same
structures as well, then they have the same strong
generative capacity

5 / 1



Formal Grammar

• A formal grammar is a way of telling what a valid string is in
a formal language

• Formal grammars can also generate valid strings

• If two different grammars can generate/accept the same
formal languages, then they have the same weak generative
capacity

• If two different grammars can generate/accept the same
structures as well, then they have the same strong
generative capacity

5 / 1



Formal Language Hierarchy

Formal Language

Non-Turing-acceptable

0: Recursively enumerable
Recursive/ Decidable

1: Context-sensitive

Indexed

Mildly context-sensitive
2: Context-free

Deterministic context-free
3: Regular

Finite

This is extended from the older Chomsky hierarchy. We’ll discuss the ones in
boldface, as they’re relevant to natural languages.

6 / 1



Formal Language Hierarchy

Formal Language

Non-Turing-acceptable

0: Recursively enumerable
Recursive/ Decidable

1: Context-sensitive

Indexed

Mildly context-sensitive
2: Context-free

Deterministic context-free
3: Regular

Finite

This is extended from the older Chomsky hierarchy.

We’ll discuss the ones in
boldface, as they’re relevant to natural languages.

6 / 1



Formal Language Hierarchy

Formal Language

Non-Turing-acceptable

0: Recursively enumerable
Recursive/ Decidable

1: Context-sensitive

Indexed

Mildly context-sensitive
2: Context-free

Deterministic context-free
3: Regular

Finite

This is extended from the older Chomsky hierarchy. We’ll discuss the ones in
boldface, as they’re relevant to natural languages.

6 / 1



Why is this Stuff Relevant??

• Knowing what types of formal languages a
grammar/automaton can generate & accept will give you an
idea of what phenomena in natural languages that they can
handle

• For example: long-distance dependencies, complex reordering
in machine translation, reduplication, etc.

• You can also get an idea of how fast or slow it will take for a
computer (or human) to process sequential stuff (like natural
language!)

7 / 1



Why is this Stuff Relevant??

• Knowing what types of formal languages a
grammar/automaton can generate & accept will give you an
idea of what phenomena in natural languages that they can
handle

• For example: long-distance dependencies, complex reordering
in machine translation, reduplication, etc.

• You can also get an idea of how fast or slow it will take for a
computer (or human) to process sequential stuff (like natural
language!)

7 / 1



Why is this Stuff Relevant??

• Knowing what types of formal languages a
grammar/automaton can generate & accept will give you an
idea of what phenomena in natural languages that they can
handle

• For example: long-distance dependencies, complex reordering
in machine translation, reduplication, etc.

• You can also get an idea of how fast or slow it will take for a
computer (or human) to process sequential stuff (like natural
language!)

7 / 1



Finite Languages

• In a finite language, there are a finite (ie not infinite) number
of valid sentences.

• Time: constant (through hash-table lookup)

• Memory: constant (duh)

• For natural language, this would correspond to having a finite
number of possible sentences

8 / 1



Finite Languages

• In a finite language, there are a finite (ie not infinite) number
of valid sentences.

• Time: constant (through hash-table lookup)

• Memory: constant (duh)

• For natural language, this would correspond to having a finite
number of possible sentences

8 / 1



Are Natural Languages Finite??!!

• It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

• Really, really crazy

• But...

• There’s a big difference between a really large number and
infinity

• If a natural language has a vocabulary of, say, 100 million words ...

• And a sentence can have, say, up to 10,000 words in it, ...

• Then there would be 1080,000 possible sentences

• This number sounds way too big to be practical for either
humans or computers to deal with!

• But it’s much smaller than infinity.

• Much much smaller.
• (There’s more discussion on the interwebs if you’re interested)

9 / 1

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf


Are Natural Languages Finite??!!

• It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

• Really, really crazy

• But...

• There’s a big difference between a really large number and
infinity

• If a natural language has a vocabulary of, say, 100 million words ...

• And a sentence can have, say, up to 10,000 words in it, ...

• Then there would be 1080,000 possible sentences

• This number sounds way too big to be practical for either
humans or computers to deal with!

• But it’s much smaller than infinity.

• Much much smaller.
• (There’s more discussion on the interwebs if you’re interested)

9 / 1

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf


Are Natural Languages Finite??!!

• It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

• Really, really crazy

• But...

• There’s a big difference between a really large number and
infinity

• If a natural language has a vocabulary of, say, 100 million words ...

• And a sentence can have, say, up to 10,000 words in it, ...

• Then there would be 1080,000 possible sentences

• This number sounds way too big to be practical for either
humans or computers to deal with!

• But it’s much smaller than infinity.

• Much much smaller.
• (There’s more discussion on the interwebs if you’re interested)

9 / 1

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf


Are Natural Languages Finite??!!

• It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

• Really, really crazy

• But...

• There’s a big difference between a really large number and
infinity

• If a natural language has a vocabulary of, say, 100 million words ...

• And a sentence can have, say, up to 10,000 words in it, ...

• Then there would be 1080,000 possible sentences

• This number sounds way too big to be practical for either
humans or computers to deal with!

• But it’s much smaller than infinity.

• Much much smaller.
• (There’s more discussion on the interwebs if you’re interested)

9 / 1

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf


Are Natural Languages Finite??!!

• It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

• Really, really crazy

• But...

• There’s a big difference between a really large number and
infinity

• If a natural language has a vocabulary of, say, 100 million words ...

• And a sentence can have, say, up to 10,000 words in it, ...

• Then there would be 1080,000 possible sentences

• This number sounds way too big to be practical for either
humans or computers to deal with!

• But it’s much smaller than infinity.

• Much much smaller.
• (There’s more discussion on the interwebs if you’re interested)

9 / 1

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf


Are Natural Languages Finite??!!

• It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

• Really, really crazy

• But...

• There’s a big difference between a really large number and
infinity

• If a natural language has a vocabulary of, say, 100 million words ...

• And a sentence can have, say, up to 10,000 words in it, ...

• Then there would be 1080,000 possible sentences

• This number sounds way too big to be practical for either
humans or computers to deal with!

• But it’s much smaller than infinity.

• Much much smaller.
• (There’s more discussion on the interwebs if you’re interested)

9 / 1

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf


Are Natural Languages Finite??!!

• It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

• Really, really crazy

• But...

• There’s a big difference between a really large number and
infinity

• If a natural language has a vocabulary of, say, 100 million words ...

• And a sentence can have, say, up to 10,000 words in it, ...

• Then there would be 1080,000 possible sentences

• This number sounds way too big to be practical for either
humans or computers to deal with!

• But it’s much smaller than infinity.

• Much much smaller.
• (There’s more discussion on the interwebs if you’re interested)

9 / 1

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf


Are Natural Languages Finite??!!

• It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

• Really, really crazy

• But...

• There’s a big difference between a really large number and
infinity

• If a natural language has a vocabulary of, say, 100 million words ...

• And a sentence can have, say, up to 10,000 words in it, ...

• Then there would be 1080,000 possible sentences

• This number sounds way too big to be practical for either
humans or computers to deal with!

• But it’s much smaller than infinity.

• Much much smaller.
• (There’s more discussion on the interwebs if you’re interested)

9 / 1

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf


Are Natural Languages Finite??!!

• It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

• Really, really crazy

• But...

• There’s a big difference between a really large number and
infinity

• If a natural language has a vocabulary of, say, 100 million words ...

• And a sentence can have, say, up to 10,000 words in it, ...

• Then there would be 1080,000 possible sentences

• This number sounds way too big to be practical for either
humans or computers to deal with!

• But it’s much smaller than infinity.

• Much much smaller.
• (There’s more discussion on the interwebs if you’re interested)

9 / 1

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf


Are Natural Languages Finite??!!

• It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

• Really, really crazy

• But...

• There’s a big difference between a really large number and
infinity

• If a natural language has a vocabulary of, say, 100 million words ...

• And a sentence can have, say, up to 10,000 words in it, ...

• Then there would be 1080,000 possible sentences

• This number sounds way too big to be practical for either
humans or computers to deal with!

• But it’s much smaller than infinity.

• Much much smaller.

• (There’s more discussion on the interwebs if you’re interested)

9 / 1

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf


Are Natural Languages Finite??!!

• It sounds crazy to think that you could ever list all of the
possible sentences of a natural language

• Really, really crazy

• But...

• There’s a big difference between a really large number and
infinity

• If a natural language has a vocabulary of, say, 100 million words ...

• And a sentence can have, say, up to 10,000 words in it, ...

• Then there would be 1080,000 possible sentences

• This number sounds way too big to be practical for either
humans or computers to deal with!

• But it’s much smaller than infinity.

• Much much smaller.
• (There’s more discussion on the interwebs if you’re interested)9 / 1

http://people.umass.edu/~partee/726_04/lectures/Is_Language_Infinite.pdf


(A digression on complexity)

• Processing different kinds of languages take different kinds of
machines.

• The automaton that recognizes a language represents an
algorithm.

• Algorithms take up “space” units (memory to process) and
“time” units (number of steps to do something).

• We can characterize what this means in terms of the length of
the input string, which we’ll call n.

• Then we have something called big-O notation from computer
science. To make a long story short:
O(1) “constant time” # units unrelated to input
O(n) “linear time” # units lin. proportional to input string
O(n2) “quadratic time” # unites quadrat. prop. to input string
. . .

10 / 1



(A digression on complexity)

• Processing different kinds of languages take different kinds of
machines.

• The automaton that recognizes a language represents an
algorithm.

• Algorithms take up “space” units (memory to process) and
“time” units (number of steps to do something).

• We can characterize what this means in terms of the length of
the input string, which we’ll call n.

• Then we have something called big-O notation from computer
science. To make a long story short:
O(1) “constant time” # units unrelated to input
O(n) “linear time” # units lin. proportional to input string
O(n2) “quadratic time” # unites quadrat. prop. to input string
. . .

10 / 1



(A digression on complexity)

• Processing different kinds of languages take different kinds of
machines.

• The automaton that recognizes a language represents an
algorithm.

• Algorithms take up “space” units (memory to process) and
“time” units (number of steps to do something).

• We can characterize what this means in terms of the length of
the input string, which we’ll call n.

• Then we have something called big-O notation from computer
science. To make a long story short:
O(1) “constant time” # units unrelated to input
O(n) “linear time” # units lin. proportional to input string
O(n2) “quadratic time” # unites quadrat. prop. to input string
. . .

10 / 1



(A digression on complexity)

• Processing different kinds of languages take different kinds of
machines.

• The automaton that recognizes a language represents an
algorithm.

• Algorithms take up “space” units (memory to process) and
“time” units (number of steps to do something).

• We can characterize what this means in terms of the length of
the input string, which we’ll call n.

• Then we have something called big-O notation from computer
science. To make a long story short:
O(1) “constant time” # units unrelated to input
O(n) “linear time” # units lin. proportional to input string
O(n2) “quadratic time” # unites quadrat. prop. to input string
. . .

10 / 1



(A digression on complexity)

• Processing different kinds of languages take different kinds of
machines.

• The automaton that recognizes a language represents an
algorithm.

• Algorithms take up “space” units (memory to process) and
“time” units (number of steps to do something).

• We can characterize what this means in terms of the length of
the input string, which we’ll call n.

• Then we have something called big-O notation from computer
science. To make a long story short:
O(1) “constant time” # units unrelated to input
O(n) “linear time” # units lin. proportional to input string
O(n2) “quadratic time” # unites quadrat. prop. to input string
. . .

10 / 1



Regular Languages

• Ok, so maybe for now it’s too difficult to list all possible
sentences

• Let’s assume that the vocabulary (Σ) is still fixed (or finite),
but we can generate an infinite number of sentences from this
fixed vocab

• Regular grammars have a fixed-length history, so they’re
limited in the types of long-distance phenomena they can
handle

• For example: a a′ b b′ c c′

• Processing regular languages can be done in linear time
(O(n)), with a constant size of memory (O(1))

11 / 1



Regular Languages

• Ok, so maybe for now it’s too difficult to list all possible
sentences

• Let’s assume that the vocabulary (Σ) is still fixed (or finite),
but we can generate an infinite number of sentences from this
fixed vocab

• Regular grammars have a fixed-length history, so they’re
limited in the types of long-distance phenomena they can
handle

• For example: a a′ b b′ c c′

• Processing regular languages can be done in linear time
(O(n)), with a constant size of memory (O(1))

11 / 1



Regular Languages

• Ok, so maybe for now it’s too difficult to list all possible
sentences

• Let’s assume that the vocabulary (Σ) is still fixed (or finite),
but we can generate an infinite number of sentences from this
fixed vocab

• Regular grammars have a fixed-length history, so they’re
limited in the types of long-distance phenomena they can
handle

• For example: a a′ b b′ c c′

• Processing regular languages can be done in linear time
(O(n)), with a constant size of memory (O(1))

11 / 1



Deterministic Context-Free Languages

• Deterministic context-free (DCF) languages include
longer-distance phenomena

• DCF grammars have a full-length history, as long as there’s no
ambiguity (ie. it can’t backtrack)

• Processing DCF languages can be done in linear time (O(n)),
with linear memory usage (O(n))

12 / 1



Deterministic Context-Free Languages

• Deterministic context-free (DCF) languages include
longer-distance phenomena

• DCF grammars have a full-length history, as long as there’s no
ambiguity (ie. it can’t backtrack)

• Processing DCF languages can be done in linear time (O(n)),
with linear memory usage (O(n))

12 / 1



Context-Free Languages

• Context-free languages include phenomena like center
embedding

• For example: a b c c′ b′ a′

• Context-free grammars have a full-length history, and they can
backtrack for ambiguous sentences

• Processing CF languages can be done in about cubic time
(O(n3)), with linear memory usage (O(n))

13 / 1



Context-Free Languages

• Context-free languages include phenomena like center
embedding

• For example: a b c c′ b′ a′

• Context-free grammars have a full-length history, and they can
backtrack for ambiguous sentences

• Processing CF languages can be done in about cubic time
(O(n3)), with linear memory usage (O(n))

13 / 1



Context-Free Languages

• Context-free languages include phenomena like center
embedding

• For example: a b c c′ b′ a′

• Context-free grammars have a full-length history, and they can
backtrack for ambiguous sentences

• Processing CF languages can be done in about cubic time
(O(n3)), with linear memory usage (O(n))

13 / 1



Mildly Context-Sensitive Languages

• Mildly context-sensitive (MCS) languages include phenomena
like reduplication and cross-serial dependencies.

• Example: a b c a′ b′ c′

• Processing MCS languages can be done in about O(n6) time,
with quadratic memory usage (O(n2))

• Mildly context-sensitive is very different from context-sensitive,

which is much more powerful

• Some grammar formalisms that can handle MCS langs:
• Tree Adjoining Grammar (TAG)
• Combinatory Categorial Grammar (CCG)
• Linear Indexed Grammars (LIG) (easy to understand)

• Head Grammars (HG)

14 / 1

https://en.wikipedia.org/wiki/Tree-adjoining_grammar
https://en.wikipedia.org/wiki/Combinatory_categorial_grammar
https://en.wikipedia.org/wiki/Indexed_grammar#Linear_indexed_grammars
https://en.wikipedia.org/wiki/Head_grammar


Mildly Context-Sensitive Languages

• Mildly context-sensitive (MCS) languages include phenomena
like reduplication and cross-serial dependencies.

• Example: a b c a′ b′ c′

• Processing MCS languages can be done in about O(n6) time,
with quadratic memory usage (O(n2))

• Mildly context-sensitive is very different from context-sensitive,

which is much more powerful

• Some grammar formalisms that can handle MCS langs:
• Tree Adjoining Grammar (TAG)
• Combinatory Categorial Grammar (CCG)
• Linear Indexed Grammars (LIG) (easy to understand)

• Head Grammars (HG)

14 / 1

https://en.wikipedia.org/wiki/Tree-adjoining_grammar
https://en.wikipedia.org/wiki/Combinatory_categorial_grammar
https://en.wikipedia.org/wiki/Indexed_grammar#Linear_indexed_grammars
https://en.wikipedia.org/wiki/Head_grammar


Mildly Context-Sensitive Languages

• Mildly context-sensitive (MCS) languages include phenomena
like reduplication and cross-serial dependencies.

• Example: a b c a′ b′ c′

• Processing MCS languages can be done in about O(n6) time,
with quadratic memory usage (O(n2))

• Mildly context-sensitive is very different from context-sensitive,

which is much more powerful

• Some grammar formalisms that can handle MCS langs:
• Tree Adjoining Grammar (TAG)
• Combinatory Categorial Grammar (CCG)
• Linear Indexed Grammars (LIG) (easy to understand)

• Head Grammars (HG)

14 / 1

https://en.wikipedia.org/wiki/Tree-adjoining_grammar
https://en.wikipedia.org/wiki/Combinatory_categorial_grammar
https://en.wikipedia.org/wiki/Indexed_grammar#Linear_indexed_grammars
https://en.wikipedia.org/wiki/Head_grammar


Mildly Context-Sensitive Languages

• Mildly context-sensitive (MCS) languages include phenomena
like reduplication and cross-serial dependencies.

• Example: a b c a′ b′ c′

• Processing MCS languages can be done in about O(n6) time,
with quadratic memory usage (O(n2))

• Mildly context-sensitive is very different from context-sensitive,

which is much more powerful

• Some grammar formalisms that can handle MCS langs:
• Tree Adjoining Grammar (TAG)
• Combinatory Categorial Grammar (CCG)
• Linear Indexed Grammars (LIG) (easy to understand)

• Head Grammars (HG)

14 / 1

https://en.wikipedia.org/wiki/Tree-adjoining_grammar
https://en.wikipedia.org/wiki/Combinatory_categorial_grammar
https://en.wikipedia.org/wiki/Indexed_grammar#Linear_indexed_grammars
https://en.wikipedia.org/wiki/Head_grammar


Recursively Enumerable Languages

• Recursively enumerable languages allow any string that a
computer (or equivalent device) can generate/accept

• There’s no guarantee that the computer will ever stop
processing the sentence

• Essentially any word can occur in any place in the sentence

• Some grammar formalisms that allow recursively enumerable
languages include:
• Chomskyan grammars (due to transformations / moves)
• Lexical Functional Grammar (LFG)
• Head-driven Phrase Structure Grammar (HPSG) (due to

Slash features)

• Note that these grammar formalisms can place some
restrictions on word order, but they still accept/generate
recursively enumerable languages. How is that so? Additional
grammar rules can work around such restrictions to
accept/generate the string.

15 / 1

https://en.wikipedia.org/wiki/Transformational_grammar
https://en.wikipedia.org/wiki/Lexical_functional_grammar
https://en.wikipedia.org/wiki/Head-driven_phrase_structure_grammar


Recursively Enumerable Languages

• Recursively enumerable languages allow any string that a
computer (or equivalent device) can generate/accept

• There’s no guarantee that the computer will ever stop
processing the sentence

• Essentially any word can occur in any place in the sentence
• Some grammar formalisms that allow recursively enumerable

languages include:
• Chomskyan grammars (due to transformations / moves)
• Lexical Functional Grammar (LFG)
• Head-driven Phrase Structure Grammar (HPSG) (due to

Slash features)

• Note that these grammar formalisms can place some
restrictions on word order, but they still accept/generate
recursively enumerable languages. How is that so? Additional
grammar rules can work around such restrictions to
accept/generate the string.

15 / 1

https://en.wikipedia.org/wiki/Transformational_grammar
https://en.wikipedia.org/wiki/Lexical_functional_grammar
https://en.wikipedia.org/wiki/Head-driven_phrase_structure_grammar


Recursively Enumerable Languages

• Recursively enumerable languages allow any string that a
computer (or equivalent device) can generate/accept

• There’s no guarantee that the computer will ever stop
processing the sentence

• Essentially any word can occur in any place in the sentence
• Some grammar formalisms that allow recursively enumerable

languages include:
• Chomskyan grammars (due to transformations / moves)
• Lexical Functional Grammar (LFG)
• Head-driven Phrase Structure Grammar (HPSG) (due to

Slash features)

• Note that these grammar formalisms can place some
restrictions on word order, but they still accept/generate
recursively enumerable languages.

How is that so? Additional
grammar rules can work around such restrictions to
accept/generate the string.

15 / 1

https://en.wikipedia.org/wiki/Transformational_grammar
https://en.wikipedia.org/wiki/Lexical_functional_grammar
https://en.wikipedia.org/wiki/Head-driven_phrase_structure_grammar


Recursively Enumerable Languages

• Recursively enumerable languages allow any string that a
computer (or equivalent device) can generate/accept

• There’s no guarantee that the computer will ever stop
processing the sentence

• Essentially any word can occur in any place in the sentence
• Some grammar formalisms that allow recursively enumerable

languages include:
• Chomskyan grammars (due to transformations / moves)
• Lexical Functional Grammar (LFG)
• Head-driven Phrase Structure Grammar (HPSG) (due to

Slash features)

• Note that these grammar formalisms can place some
restrictions on word order, but they still accept/generate
recursively enumerable languages. How is that so?

Additional
grammar rules can work around such restrictions to
accept/generate the string.

15 / 1

https://en.wikipedia.org/wiki/Transformational_grammar
https://en.wikipedia.org/wiki/Lexical_functional_grammar
https://en.wikipedia.org/wiki/Head-driven_phrase_structure_grammar


Recursively Enumerable Languages

• Recursively enumerable languages allow any string that a
computer (or equivalent device) can generate/accept

• There’s no guarantee that the computer will ever stop
processing the sentence

• Essentially any word can occur in any place in the sentence
• Some grammar formalisms that allow recursively enumerable

languages include:
• Chomskyan grammars (due to transformations / moves)
• Lexical Functional Grammar (LFG)
• Head-driven Phrase Structure Grammar (HPSG) (due to

Slash features)

• Note that these grammar formalisms can place some
restrictions on word order, but they still accept/generate
recursively enumerable languages. How is that so? Additional
grammar rules can work around such restrictions to
accept/generate the string.

15 / 1

https://en.wikipedia.org/wiki/Transformational_grammar
https://en.wikipedia.org/wiki/Lexical_functional_grammar
https://en.wikipedia.org/wiki/Head-driven_phrase_structure_grammar


But that’s just strings. . .

• Why do we care how the strings are structured?

• Because different structures enable different computations!

• For example: context-free languages harder to machine-learn
than regular languages.

16 / 1

http://science.howstuffworks.com/science-vs-myth/everyday-myths/string-theory.htm


But that’s just strings. . .

• Why do we care how the strings are structured?

• Because different structures enable different computations!

• For example: context-free languages harder to machine-learn
than regular languages.

16 / 1

http://science.howstuffworks.com/science-vs-myth/everyday-myths/string-theory.htm


But that’s just strings. . .

• Why do we care how the strings are structured?

• Because different structures enable different computations!

• For example: context-free languages harder to machine-learn
than regular languages.

16 / 1

http://science.howstuffworks.com/science-vs-myth/everyday-myths/string-theory.htm


But that’s just strings. . .

• Why do we care how the strings are structured?

• Because different structures enable different computations!

• For example: context-free languages harder to machine-learn
than regular languages.

16 / 1

http://science.howstuffworks.com/science-vs-myth/everyday-myths/string-theory.htm


Meaning: something to do with language?

• In some sense, we want to get at the meaning in language.

• Implicit or explicit meaning?
• Machine learning: perhaps just map structures in one language

to structures in another? No meaning required.
• Computer vision – maybe we really want explicit descriptions

of objects in human language.

17 / 1



Meaning: something to do with language?

• In some sense, we want to get at the meaning in language.

• Implicit or explicit meaning?
• Machine learning: perhaps just map structures in one language

to structures in another? No meaning required.
• Computer vision – maybe we really want explicit descriptions

of objects in human language.

17 / 1



Meaning: something to do with language?

• In some sense, we want to get at the meaning in language.

• Implicit or explicit meaning?

• Machine learning: perhaps just map structures in one language
to structures in another? No meaning required.

• Computer vision – maybe we really want explicit descriptions
of objects in human language.

17 / 1



Meaning: something to do with language?

• In some sense, we want to get at the meaning in language.

• Implicit or explicit meaning?
• Machine learning: perhaps just map structures in one language

to structures in another? No meaning required.

• Computer vision – maybe we really want explicit descriptions
of objects in human language.

17 / 1



Meaning: something to do with language?

• In some sense, we want to get at the meaning in language.

• Implicit or explicit meaning?
• Machine learning: perhaps just map structures in one language

to structures in another? No meaning required.
• Computer vision – maybe we really want explicit descriptions

of objects in human language.

17 / 1



Lexical representation

• Words have meanings. How do we describe what a word
means?

• First attempt: use “features.”
• “bachelor” = +male, +adult, -married
• “husband” = +male, +adult, +married
• “bachelor” = “husband” × (-married)

• Dictionary problem: what is the meaning of a feature? Define
words in terms of other words?

18 / 1



Lexical representation

• Words have meanings. How do we describe what a word
means?

• First attempt: use “features.”

• “bachelor” = +male, +adult, -married
• “husband” = +male, +adult, +married
• “bachelor” = “husband” × (-married)

• Dictionary problem: what is the meaning of a feature? Define
words in terms of other words?

18 / 1



Lexical representation

• Words have meanings. How do we describe what a word
means?

• First attempt: use “features.”
• “bachelor” = +male, +adult, -married

• “husband” = +male, +adult, +married
• “bachelor” = “husband” × (-married)

• Dictionary problem: what is the meaning of a feature? Define
words in terms of other words?

18 / 1



Lexical representation

• Words have meanings. How do we describe what a word
means?

• First attempt: use “features.”
• “bachelor” = +male, +adult, -married
• “husband” = +male, +adult, +married

• “bachelor” = “husband” × (-married)

• Dictionary problem: what is the meaning of a feature? Define
words in terms of other words?

18 / 1



Lexical representation

• Words have meanings. How do we describe what a word
means?

• First attempt: use “features.”
• “bachelor” = +male, +adult, -married
• “husband” = +male, +adult, +married
• “bachelor” = “husband” × (-married)

• Dictionary problem: what is the meaning of a feature? Define
words in terms of other words?

18 / 1



Lexical representation

• Words have meanings. How do we describe what a word
means?

• First attempt: use “features.”
• “bachelor” = +male, +adult, -married
• “husband” = +male, +adult, +married
• “bachelor” = “husband” × (-married)

• Dictionary problem: what is the meaning of a feature? Define
words in terms of other words?

18 / 1



Compositional and sentence meaning

• But sentences have meanings too!

• “The kitten is playing the violin” – DOER: kitten, THING
DONE TO: violin, ACTION: play

• Common way of representing this: first-order predicate
calculus.
• ∃x∃ykitten(x)&violin(y)&play(x , y)
• Does this really represent the meaning relationships well?

• The main question of formal semantics: what do we need to
reason about language?

19 / 1



Compositional and sentence meaning

• But sentences have meanings too!

• “The kitten is playing the violin” – DOER: kitten, THING
DONE TO: violin, ACTION: play

• Common way of representing this: first-order predicate
calculus.
• ∃x∃ykitten(x)&violin(y)&play(x , y)
• Does this really represent the meaning relationships well?

• The main question of formal semantics: what do we need to
reason about language?

19 / 1



Compositional and sentence meaning

• But sentences have meanings too!

• “The kitten is playing the violin” – DOER: kitten, THING
DONE TO: violin, ACTION: play

• Common way of representing this: first-order predicate
calculus.

• ∃x∃ykitten(x)&violin(y)&play(x , y)
• Does this really represent the meaning relationships well?

• The main question of formal semantics: what do we need to
reason about language?

19 / 1



Compositional and sentence meaning

• But sentences have meanings too!

• “The kitten is playing the violin” – DOER: kitten, THING
DONE TO: violin, ACTION: play

• Common way of representing this: first-order predicate
calculus.
• ∃x∃ykitten(x)&violin(y)&play(x , y)

• Does this really represent the meaning relationships well?

• The main question of formal semantics: what do we need to
reason about language?

19 / 1



Compositional and sentence meaning

• But sentences have meanings too!

• “The kitten is playing the violin” – DOER: kitten, THING
DONE TO: violin, ACTION: play

• Common way of representing this: first-order predicate
calculus.
• ∃x∃ykitten(x)&violin(y)&play(x , y)
• Does this really represent the meaning relationships well?

• The main question of formal semantics: what do we need to
reason about language?

19 / 1



Compositional and sentence meaning

• But sentences have meanings too!

• “The kitten is playing the violin” – DOER: kitten, THING
DONE TO: violin, ACTION: play

• Common way of representing this: first-order predicate
calculus.
• ∃x∃ykitten(x)&violin(y)&play(x , y)
• Does this really represent the meaning relationships well?

• The main question of formal semantics: what do we need to
reason about language?

19 / 1


