Lecture 9: Computational Syntax Acquisition

Afra Alishahi
January 12, 2009
Human Language Acquisition

- **Representation** of the linguistic knowledge
 - What is innate, what is learnable?
 - How is the knowledge organized in mind and brain?
 - Are there separate areas/levels for representing lexical/syntactic/semantic knowledge?

- **Acquisition** of the linguistic knowledge
 - What are the processes involved in language learning?
 - Are different types of knowledge acquired in order?
Learnability in Acquisition

- Representation of the linguistic knowledge
 - What is innate, what is learnable?
 - How is the knowledge organized in mind and brain?
 - Are there separate collections/levels for representing lexical/syntactic/semantic knowledge?
- Acquisition of the linguistic knowledge
 - What are the processes involved in language learning?
 - Are different types of knowledge acquired in order?
Modularity in Acquisition

- Representation of the linguistic knowledge
 - What is innate, what is learnable?
 - How is the knowledge organized in mind and brain?
 - Are there separate collections/levels for representing lexical/syntactic/semantic knowledge?
- Acquisition of the linguistic knowledge
 - What are the processes involved in language learning?
 - Are different types of knowledge acquired in order?
Acquisition vs. Processing

- How is acquisition related to processing?
- **Competence**: what it means to “know” a language
 - syntactic and semantic rules and representations provided by a linguistic theory
- **Performance**: how is such knowledge used online to recover the meaning for a given sentence
 - a psychologically plausible parsing algorithm
Computational modeling of human language acquisition:

- Providing cognitively plausible formalisms for representing linguistic knowledge
- Developing algorithms that can acquire knowledge of language from exposure to linguistic data
Cognitive Modeling: Evaluation

- Cognitive models cannot be solely evaluated based on their accuracy in performing a task.
 - The **behavior** of the model must be compared against observed human behavior.
 - The **errors** made by humans must be replicated and explained.
- Evaluation of cognitive models depends highly on **experimental studies of language**.
Experimental Studies

- Collected data on child language development
 - CHILDES database (MacWhinney, 1995)

- Experimental methods
 - Neuroscientific methods
 - Preferential looking studies
Nativism

• **The Innateness Hypothesis (IH):**
 - Humans have innately specified, domain specific knowledge in several areas, in particular language
 - The hypothesis must ultimately settled by neurological evidence, but for now, we have to use indirect evidence from psycholinguistics

• **Localization:**
 - Our ability to process language is localized to specific regions of the brain (Bates, 1994)

• Innateness is not the same as localization
The key claim of innateness is that the humans’ innate abilities of language are domain-specific.

- Specific to language
- Include highly detailed linguistic knowledge
- Many species have domain-specific, innately specified abilities or behaviours
- E.g., spiders weaving complex webs on their first attempts
Innateness of Language

- Newborns exhibit few complex behaviours immediately after birth.
- But it is claimed that children acquire language (esp. syntax) without being exposed to sufficient stimulus.
- Therefore, there must be a pre-existing domain-specific innate structure that partially specifies the structure of their knowledge of language (Chomsky, 1986; Pinker, 1994)
Argument from the Poverty of the Stimulus

- APS: main argument for Innateness Hypothesis
- **Argument from the Poverty of the Stimulus** (Chomsky, 1965): linguistic experience of a child is not sufficiently rich for learning the grammar of the language
- Children learn the language, thus they must have access to some innate source of information to constrain the search for the correct grammar
Premise of APS

• Knowing a language involves knowing a grammar

• A domain-specific form of knowledge representation that permits the creation of an infinite set of well-formed utterances

• There are no general learning algorithms that can learn grammars from the linguistic evidence that children are exposed to.
Universal Grammar

- **Universal Grammar**: a limited set of rules which organize language in the human brain (Chomsky)
- Underlying assumption: all languages have a common structural basis
- Most of the UG rules have the form "if a language has a feature X, it will also have the feature Y."
- Example: “If a language is head-initial, it will have prepositional phrases. If it is head-final, it will have post-positional phrases.”
Principles and Parameters

- **Principles and Parameters** is a framework for representing Universal Grammar.
- P&P: a humans’ syntactic knowledge can be modeled with two formal mechanisms:
 - A finite set of fundamental *principles* that are common to all languages (e.g., a sentence must have a subject)
 - A finite set of *parameters* that determine syntactic variability amongst languages (e.g., a binary parameter that determines whether or not the subject of a sentence must be overtly pronounced)
Learning as Parameter Setting

- In the P&P framework, learning a language involves setting the parameters of UG to the appropriate values for the current language.
- Fixing the values of a finite set of parameters to select a single fully-specified grammar.
Computational Simulation of P&P

• Gibson & Wexler (1994):
 • Each trigger (i.e., sentence) signals the value of some parameter and can guide to the target grammar
 • Learner must update a parameter so that the trigger can be parsed appropriately

• Briscoe (2000)
 • Parameter setting in a Generalized Categorial Grammar (GCG)
 • Learning is based on a partial ordering on the updating of parameter settings
Limitations of Computational P&P

- Parameter setting framework predicts a huge space of possible grammars.
- 20 binary parameters lead to > 1 million grammars.
- The search spaces for a grammar contain local maxima, which may cause a learner to converge to an incorrect grammar.
- Most of the models are psychologically implausible because they predict that a child may repeatedly revisit the same hypothesis and/or jump randomly around the hypothesis space.
P&P and UG: Criticism

- Formalizing a UG that covers all of the existing languages has been a challenge.
- Learning in P&P relies on well-formed, complete sentences as input, but conversation analysis shows that speakers often use incomplete data.
- P&P ignores the role of linguistic experience in learning, and cannot explain frequency effects.
- Infants are shown to be sensitive to transitional probabilities in artificial languages (Saffran et al, 1996).
A number of computational models are proposed to show that learning a grammar from corpus data is possible (mostly CFG).

A variety of machine learning techniques are used, mainly to induce a grammar that fits the corpus data best.

Most of these models are not incremental, and focus on syntax acquisition without taking semantics into account.
Example: MOSAIC

- **MOSAIC** (Model Of Syntax Acquisition In Children; Jones et al, 2000)
 - Learns from raw text, and produces utterances similar to what children produce
 - Uses a *discrimination network*, where nodes represent single words and links present a generative link
 - Learning involves **expanding the network** based on the input data, and production involves **traversing the network** and outputting the contents of the links
Example: Clark (2001)

- A model of syntax acquisition (Clark, 2001):
 - **Unsupervised induction** of stochastic context-free grammars from tagged text
 - Sets of **tag sequences are clustered** together based on their context
 - A grammar is iteratively built by forming clusters and defining rules that best describe data
 - No **lexical information** is learned by the algorithm
Claim: knowing a language is not equated with knowing a grammar.

Knowledge of language is developed in the course of learning to perform primary communicative tasks of comprehension and production.

Neural networks: different levels of linguistic representation are emergent structures that a network develops in the course of learning.

Usage-based Accounts of Language Acquisition

• **Claim:** children learn language regularities from the input alone, without guidance in the form of the innate principles

• **Motivation:** experimental studies on language comprehension and generation in children

• Children build their linguistic knowledge around **individual items**, rather than adjusting some general grammar rules they already possess
Verb Island Hypothesis (Tomasello, 1992):

- Young children initially learn verbs and their arguments as lexical constructions, and on an item-by-item basis
- Each verb forms its own ‘island’ consisting of verb-specific constructions with open nominal slots
- More general constructions emerge over time as children generalize the patterns that they have learned for one verb to another.
Non-domain-specific Mechanisms

- **Claim**: children use cognitive processes to gradually categorize the syntactic structure of their item-based constructions
 - **Imitation**: reproducing the language adults produce for the same communicative function
 - **Analogy**: detecting similarities between individual items’ behaviour
 - **Structure mapping**: detecting both structural and functional similarities in utterances independent of the specific words involved
Syntax vs. Semantics

- **Structure mapping**: detecting both structural and functional similarities in utterances.

- How is the surface structure (i.e., syntax) linked to the underlying meaning (i.e., semantics)?
 - Nativist account: syntax is learned independently of semantics.
 - Usage-based account: syntax and semantics are learned at the same time.
Marr’s Levels of Modeling

• Theories often provide a relatively high-level characterization of a process

• Marr (1982) identifies three levels of describing cognitive processes:
 • **Computational** level: defines *what* is computed
 • **Algorithmic** level: specifies *how* computation takes place
 • **Implementation** level: states how the algorithms are actually *realized* in brain