Lecture 11: Introduction to Connectionist Models

Afra Alishahi
January 26, 2009

(based on slides by Matthew Crocker and Marshall Mayberry)
Connectionism was proposed as an alternative to the symbolic accounts of information processing

- **Motivation:** design computers inspired by brain
- **Key ideas:** distributed, implicit representations; dense connectivity; communication of ‘real values’ not ‘symbols’; single mechanism for rules and exceptions

A functionalist assumption of language:

- **knowledge of language** develops in the course of learning how to perform primary communicative tasks of comprehension and production
The idea of connectionist models is based on simple neuronal processing in the brain.

- **Basic computational operation**: one neuron receives input signals, processes them and passes the resulting information to other neurons.

- **Learning**: changing the strength of the connections between neurons.

- **Cognitive processes**: using large numbers of neurons to perform these basic computations in parallel.

- **Information** is distributed across many neurons and connections.
Assumptions about the brain ...

- Neurons integrate information: all neuron types sum inputs and compute an output.
- Neurons encode the strength of their input in the output they pass to other neurons: firing rate.
- Brain structure is layered: information passes through sequences of independent structures.
- Influence of one neuron upon another depends on connection strength.
- Learning is accomplished through changing connection strengths.
Neurons versus Nodes
Basic Structure of Nodes

- Input connections represent the flow of activation from other nodes or some external source.
- Each input connection has a weight, which determines its influence on the node.
- A node i has an output activation $a_i = f(net_i)$ which is a function of the weighted sum of its input activations, net_i.

$$net_i = \sum_j w_{ij} a_j$$
An example

- A one-layer network:
 \[\text{net}_i = \sum_j w_{ij} a_j \]

- So the net input for \(a_2 \) is:
 \[\text{net input } a_2 = w_{20} \cdot a_0 + w_{21} \cdot a_1 \]

- Consider this network:

- The net input for node \(a_2 \) is:
 \[1 \times 0.5 + 1 \times 0.25 = 0.75 \]
About weights

- Node \(j \) influences node \(i \) by passing information about its activity level.
- The degree of influence it has is determined by the weight connecting node \(j \) to node \(i \).
- Weights can be either positive or negative.
 - Positive weights contribute activation to the net input.
 - Negative weights lead to a reduction of the net input activation.
Calculating the Activation

• **Linear activation**
 \[f(\text{net}_i) = \text{net}_i \]
 \[f(1.25) = 1.25 \]

• **Linear threshold** (T=0.5)
 IF \(\text{net}_i > T \) then \(f(\text{net}_i) = \text{net}_i - T \)
 ELSE \(f(\text{net}_i) = 0 \)
 \[f(1.25) = 1.25 - 0.5 = 0.75 \]

• **Binary threshold** (T=0.5)
 IF \(\text{net}_i > T \) then \(f(\text{net}_i) = 1 \)
 ELSE \(f(\text{net}_i) = 0 \)
 \[f(1.25) = 1 \]

• **Nonlinear activation** (Sigmoid or “logistic”)
 \[f(\text{net}_i) = \frac{1}{1 + e^{-\text{net}_i}} \]
 \[f(1.25) = 0.777 \]
About activation functions

- The activation function defines the relationship between the net input to a node, and its activation level (which is also its output).
- Most common in connectionist modeling: sigmoid/logistic
 - Activation ranges between 0 and 1
 - Rate of activation change is highest for net inputs around 0
 - Models neurons by implementing thresholding, a maximum activity, and smooth transition between states.
Summary of network architecture

- The activation of a unit i is represented by the symbol a_i
- The extent to which unit j influences unit i is determined by the weight w_{ij}
- The input from unit j to unit i is the product: $a_j * w_{ij}$
- For a node i in the network:
 \[net_i = \sum_j w_{ij} a_j \]
- The output activation of node i is determined by the activation function, e.g. the logistic:
 \[a_i = f(net_i) = \frac{1}{1 + e^{-net_i}} \]
Learning in Neural Networks

- **Supervised learning** in connectionist networks:
 - Adjusting connection weights to reduce the discrepancy between the actual output activation and the target output activation.

Procedure:
- An input is presented to the network.
- Activations are propagated through the network.
- Outputs are compared to ‘correct’ outputs.
- Weights are adjusted to reduce error.
The Delta Rule

\[\Delta w_{ij} = (t_i - a_i)a_j \epsilon \]

- \((t_i - a_i)\) is the difference between the target output activation and the actual activation produced by the network
- \(a_j\) is the activity of the contributing unit \(j\)
- \(\epsilon\) is the learning rate parameter.
- How rapidly do we want to make changes?
Training the Network

- Consider the AND function
 - Present stimulus: 0 0
 - Compute output activation
 - Compared with desired output (0)
 - Use Delta rule to change weights
 - Present next stimulus: 0 1
 - ...

- Key terms:
 - **Epoch**: a single presentation of all training examples
 - **Sweep**: a presentation of a single training example
Perceptrons (*Rosenblatt, 1958*)

- **Perceptron**: a simple, one-layer network:
 \[
 \text{net}_{out} = \sum_{in} w \cdot a_{in}
 \]
 \[
 a_{out} = \begin{cases}
 1 & \text{if } \text{net}_{out} > \theta \\
 0 & \text{otherwise}
 \end{cases}
 \]

- **Binary threshold activation function**:

- **Learning**: the perceptron convergence rule
 - Two parameters can be adjusted:
 - The threshold
 - The weights
 \[
 \Delta \theta = -\varepsilon \delta \\
 \Delta w = \varepsilon \delta a_{in}
 \]
 The error, \(\delta = (t_{out} - a_{out}) \)

- Perceptron: a simple, one-layer network:
- Binary threshold activation function:
- Learning: the perceptron convergence rule
Global Error

- We can define the **global error** of the network, as the average error across all input patterns, k:
 - One common measure is the square root of mean error or **Root Mean Square (RMS)**
 \[
 \text{rms error} = \sqrt{\frac{\sum_{k} (t_k - \hat{t}_k)^2}{k}}
 \]
 - Squaring avoids positive and negative errors canceling each other out
Learning in a nutshell

- Patterns are vectors on $[0,1]$
- Input pattern is passed through a weight matrix
- Net values are summed and squashed to $[0,1]$
- Output pattern is compared to target pattern
- Error between output and target is propagated back through weight matrix
- Weights are changed to minimize error
Hidden Units

• One-layer networks can only simulate simple problems, whereas multi-layer networks can learn any mapping function

• Consider the following network:
 • two-layer, feedforward
 • 2 units in a 'hidden' layer

• Current learning rule can’t be used for hidden units:
 • We don’t know what the ‘error’ is at these nodes
 • Delta rule requires that we know the desired activation

\[\Delta w = 2\varepsilon \delta F^* a_{in} \]
Backpropagation of Error

(a) Forward propagation of activity:

\[
\text{net}_{out} = \sum w_{oh} \cdot a_{hidden}
\]

\[
a_{out} = f(\text{net}_{out})
\]

(b) Backward propagation of error:

\[
\text{err}_{hidden} = \sum w_{oh} \cdot \delta_{out}
\]

\[
\delta_{hidden} = f'(\text{net}_{hidden}) \cdot \text{err}_{hidden}
\]
Example: Learning the Past Tense

- The problem of **English past tense** formation:
 - Regular formation: \(\text{stem} + \text{`ed'} \)
 - Irregulars do show some patterns:
 - **No-change:** hit » hit (all end in a ‘t’ or ‘d’)
 - **Vowel-change:** ring » rang, sing » sang
 - **Arbitrary:** go » went
- **Over-regularizations** are common: “goed”
 - These errors often occur after the child has already produced the correct irregular form: “went”
- The U-shaped learning curve has to be explained
A Symbolic Account: Dual-Route Model

- General pattern of behaviour:
 - At first, children learn past tenses by rote learning (i.e. memorizing each form)
 - Later they recognize ‘the rule’, and form a general device to add the ‘ed’ suffix to each verb form
 - Forms do not need to be memorized anymore, but this leads to overgeneralization
 - Finally, they distinguish which forms can be generated by the rule, and which must be stored as exceptions
A Symbolic Account: Dual-Route Model

- Errors result from the transition from rote learning to rule-governed.
- Recovery occurs after sufficient exposure to irregulars.
- More frequency results in increased ‘strength’.
- **Prediction:** faster recovery for frequent irregulars.
Learning the Rule

• This model requires two qualitatively different types of mechanisms
• It accounts for the U-shaped curve and the observed dissociation
• Children make mistakes on irregular forms only
• No explicit account of how the rule is learned
• Perhaps the notion of inflection is innately specified, and need not itself be learned:
 • The inflectional mechanism is triggered by the environment or maturation
 • The language specific manifestation must be learned
• Early learning tends to be focused on **irregular verbs**

• Irregular sub-classes (hit, sing, ring) might lead to incorrect rule learning
 • These do occur, but typically late in learning
 • How are ‘good’ rules distinguished and selected?

• English is unusual in possessing a large class of regular verbs (only 180 irregulars)
 • Only 20% of plurals in Arabic are regular
 • Norwegian has 2 regular forms for verbs: 3-route model?
Rumelhart and McClelland (1986)

- A single-layer feed-forward network (perceptron)
 - Input: a phonological representation of the stem
 - Output: a phonological representation of the past tense
- Training:
 - First trained on 10 high frequency verbs, then on 420 (medium frequency) verbs (80% regular)
 - Early in training, shows tendency to overgeneralize
 - End of training, exhibits near perfect performance
 - Generalized reasonably well to 86 low frequency verbs
Rumelhart and McClelland (1986)
Performance of R&M (1986)

- **Criticisms:**
 - U-shape performance depends on sudden changes from 10-420 in the training regime
 - Most of the 410 new verbs are regular, overwhelming the network and leading to overgeneralization

- **Justification:** children do exhibit vocabulary spurt at end of year 2
 - But errors typically occur at end of year 3
 - Vocabulary spurt is mostly due to nouns
Plunkett and Marchman (1993)

- A standard feedforward network with one hidden layer
- Initially, the model is trained to learn the past tense of 10 regular and 10 irregular verbs
- Training proceeds using the standard backprop algorithm, in response to error between actual and desired output
- Is this plausible?
Properties of P & M

- Highly sensitive to training environment:
 - Onset of overgeneralization is closely bound to a ‘critical mass’ of regular verbs learned by the child
 - Requires more training on arbitrary irregulars (go/went), which are highly frequent in the language
 - More robust for no-change verbs (hit, put) which are more numerous (type) and less frequent (token)

- Models the frequency × regularity interaction:
 - Faster reaction time for high frequency irregulars than low frequency ones
 - No advantage for regulars
Pinker & Prasada argue that the (idiosyncratic) statistical properties of English help the model:

- **Regulars** have low token frequency but high type frequency: facilitates generalization
- **Irregulars** have low type frequency but high token frequency: facilitates rote learning mechanism
- They argue no connectionist model can accommodate default generalization for a class which has both low type and token frequency
- Default inflection of plural nouns in German appear to have this property
Competitive Networks: Overview

• **Operation:**
 • Given a particular input, output units compete with each other for activation
 • The winning output unit is the one with the greatest response activation

• **During training:**
 • Connections to the winning unit from the active input units are strengthened
 • Connections from inactive units are weakened

• **Training is unsupervised**
 • The network will categorize inputs based on similarity
 • Learns to capture statistical properties of input space
A simple network:

- Inputs are fully connected to outputs by feed-forward connections.
- Outputs may be connected to each other by inhibitory connections.
- Outputs compete until only one remains active.
- Or, simply the unit with highest activation wins.
- Active units force other units to become inactive.

\[
\text{netinput}_i = \sum_j a_j w_{ij}
\]
Consider the following network:

- **Input pattern**: (0 1 1)

 netinput\(_3\) = (0\times0.3 + 1\times0.2 + 1\times0.5)
 = 0.7

 netinput\(_4\) = (0\times0.2 + 1\times0.3 + 1\times0.5)
 = 0.8

- **Since unit\(_4\) wins, no changes in connections to unit\(_3\)**

- **For connections to unit\(_4\):**

 - \(\Delta w_{ij} = \varepsilon (a_j - w_{ij}) \)

 - \(\Delta w_{ij} = 0.5 (0.0 - 0.2 \ 1.0 - 0.3 \ 1.0 - 0.5) \)

 - \(\Delta w_{ij} = 0.5 (-0.2 \ 0.7 \ 0.5) \)

 - \(\Delta w_{ij} = (-0.1 \ 0.35 \ 0.25) \)
Overall Behaviour

• Net input to an output unit is greatest when its weight vector is most similar to the input vector

• Training makes the weight vector for a particular winning unit more similar to the input pattern

• The weight vector for a particular output unit learns to respond to similar input patterns
 • The learned weights will be an average of the patterns, based on the frequency of presentation during training

• The competitive network can therefore learn to categorize similar inputs without any ‘teacher’
Summary

• Connectionism is inspired by information processing in the brain

• An input stimulus causes a pattern of activation on the first layer
 • Activations are then propagated through the network
 • Weights determine the influence of unit on each other
 • The output is the pattern of activation on final layer

• Learning aims to reduce the discrepancy between actual and desired output patterns of activation
 • Delta rule changes the weights of successive epochs
 • Training is complete when error is sufficiently reduced