Efficient Parameterizable Type Expansion
for Typed Feature Formalisms

Hans-Ulrich Krieger, Ulrich Schafer
German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, 66123 Saarbriicken, Germany
phone: (+49 681) 302-5299 fax: (4+49 681) 302-5341
{krieger,schaefer}0dfki.uni-sb.de

Abstract

Over the last few years, constraint-based grammar formalisms have be-
come the predominant paradigm in natural language processing and
computational linguistics. From the viewpoint of computer science,
typed feature structures can be seen as data structures that allow to
represent linguistic knowledge in a uniform fashion. Type expansion
is an operation that makes constraints of a typed feature structure
explicit and determines its satisfiability. We describe an efficient ex-
pansion algorithm that takes care of recursive type definitions and
allows to explore different expansion strategies through the use of
control knowledge. This knowledge is specified on a separate layer,
independent of grammatical information. The algorithm, as present-
ed in the paper, has been fully implemented in COMMON LISP and is
an integrated part of a large NL system.

Keywords: Natural language, typed feature formalisms, recursive
feature types.
Knowledge representation, languages and systems for
representing knowledge.

This paper has not already been accepted by and is not currently
under review for a journal or another conference. Nor will it be sub-
mitted for such during IJCAI’s review period.

1 Introduction

Over the last few years, constraint-based grammar formalisms [Shieber, 1986]
have become the predominant paradigm in natural language processing and
computational linguistics. While the first approaches relied on annotated
phrase structure rules (e.g., PATR-II [Shieber et al., 1983]), modern for-
malisms try to specify grammatical knowledge as well as lexicon entries en-
tirely through feature structures. In order to achieve this goal, one must
enrich the expressive power of the first unification-based formalisms with
different forms of disjunctive descriptions. Later, other operations came into
play, e.g., (classical) negation.

However the most important extension to formalisms consists of the incor-
poration of types, for instance in modern systems like TFS [Zajac, 1992],
CUF [Dérre and Dorna, 1993], or 7DL [Krieger and Schiifer, 1994]. Types
are ordered hierarchically as it is known from object-oriented programming
languages, a feature heavily employed in lexicalized grammar theories like
Head-Driven Phrase Structure Grammar (HPSG) [Pollard and Sag, 1987].
This leads to multiple inheritance in the description of linguistic entities. In
general, not only is a type related to other types through the inheritance
hierarchy, but is also provided with feature constraints that are idiosyncrat-
ic to this type. Hence, a type symbol can serve as an abbreviation for a
complex expression and an untyped feature structure becomes a typed one.
If a formalism is intended to be used as a stand-alone system, it must also
implement recursive types if it does not provide phrase-structure recursion
directly (within the formalism) or indirectly (via a parser/generator).! In
addition, certain forms of relations (like append) or additional extensions of
the formalism (like functional uncertainty) can be nicely modelled through
recursive types.

Now, because types allow us to refer to complex constraints through the
use of symbol names, we need an operation that is responsible to deduce
the constraints that are inherent to a type. This means, to reconstruct the
idiosyncratic constraints of a type, plus those that are inherited from the
supertypes. We will call such a mechanism type ezpansion (TE) or type
unfolding.? Thus TE is faced with two main tasks:

1. making certain or all feature constraints explicit (type expansion is a

!For instance, ALE employs a bottom-up chart parser, whereas TFS relies entirely
on type deduction. Note that recursive types can be substituted by definite relations
(equivalences), as is the case for CUF, such that parsing/generation roughly corresponds
to SLD resolution.

2Tt is worth noting that our notion of TE shares similarities with Ait-Kaci’s sort un-
folding [Ait-Kaci et al., 1993] and Carpenter’s total well-typedness [Carpenter, 1992, Ch.
6]. However, the latter notion is not well-defined for recursive types, i.e., recursive types
cannot be well-typed.

2.

structure-building operation)

determining the global consistency of a type or more general, of a typed
feature structure

Types not only serve as a shorthand, like templates, but also provide other
advantages which can only be accomplished if a mechanism for TE is avail-

able:

STRUCTURING KNOWLEDGE

Hierarchically ordered types allow for a modular way of representing
linguistic knowledge. Generalizations can be put at the appropriate
levels of representation. Type expansion then is responsible to gather
the distributed information that is attached to the type symbols.

SAVING MEMORY

In practice, it is not possible to hold huge lexica in full detail in memory.
However, only the idiosyncratic information of a lexicon entry need to
be represented. Type erpansion is employed in making the constraints
imposed by lexical types explicit.

EFFICIENT PROCESSING

Working with type names only or with partially expanded types min-
imizes the costs of copying structures during processing and speeds
up unification. This can only be accomplished if the system makes a
mechanism for type expansion available.

TYPE CHECKING

Type definitions allow a grammarian to declare which attributes are
appropriate for a given type and which types are appropriate for a
given attribute, therefore disallowing one to write inconsistent feature
structures. Again, type erpansion is necessary to determine the global
consistency of a given description.

RECURSIVE TYPES

Recursive types give a grammar writer the opportunity to formulate
certain functions or relations as recursive type specifications. Working
in the type deduction paradigm enforces a grammar writer to replace
the context-free backbone through recursive types. Here, parameter-
ized delayed type expansion is the key to controlled linguistic deduction
[Uszkoreit, 1991].

In the next section, we introduce the basic inventory to describe our own
novel approach to TE. We then describe the basic structure of the algorithm,
present several improvements, and show how it can be parameterized w.r.t.
different dimension. Finally, we have a few words on theoretical results and
compare our treatment with others.

2 Preliminaries

In order to describe our algorithm, we need only a small inventory to ab-
stract from the concrete implementation in 7DL and to make the approach
comparable to others. First of all, we assume pairwise disjoint sets of features
(attributes) F, atoms (constants) A, logical variables V, and types T.

In the following, we refer to a type hierarchy T by a pair (T, <), such that
< C T x T is a decidable partial order, i.e., < is reflexive, antisymmetric,
and transitive.

A typed feature structure (TFS) 6 is essentially either a ¢)-term or an e-term
[Ait-Kaci, 1986], i.e.,

0= (x,7,9) | (x,7,0)

such that x e V, 7€ T, & ={fi =61,...,fn =60,},and © = {04,...,0,},
where each f; € F and 6; is again a TFS.

We will call the equation f = 0 a feature constraint (or an attribute-value
pair).®> @ is interpreted conjunctively, whereas © represents a disjunction.
Variables are used to indicate structure sharing.

Let us give a small example to see the correspondences. The typed feature
structure

(x, cyc—list, {FIRST = 1,REST = z})

should denote the same set of objects than the following two-dimensional
attribute-value matrix (AVM) notation:

cyc—list
FIRST 1
REST

It is worth noting that for the purpose of simplicity and clarity, we restrict
TFS to the above two cases. Actually, our algorithm is more powerful in that
it handles other cases, for instance conjunction, disjunction, and negation of
types and feature constraints.

A type system Q is a pair (0,Z), where © is a finite set of typed feature
structures and Z an inheritance hierarchy. Given 2, we call § € © a type
definition.

Our algorithm is independent of the underlying deduction system—we are
not interested in the normalization of feature constraints (i.e., how unification

3Tt should be noted that we define TFS to have a nested structure and not to be flat
(in contrast to feature clauses in a more logic-oriented approach, e.g., [Ait-Kaci et al.,
1993)) in order to make the connection to the implementation clear and to come close to
the structured attribute-value matrix notation.

of feature structures is actually done) nor are we interested in the logic of
types, e.g., whether the existence of a greatest lower bound is obligatory
(TFS [Zajac, 1992]; ALE [Carpenter and Penn, 1994]) or optional as in 7DL
[Krieger and Schifer, 1994]. We assume here that typed unification is simply
a black box and can be accessed through an interface function (say unify—
tfs). From this perspective, our expansion mechanism can be either used
as a stand-alone system or as an integrated part of the typed unification
machinery.

We only have to say a few words on the semantic foundations of our approach
at the end of this paper. This is because we could either choose extensions
of feature logic [Smolka, 1989] or directly interpret our structures within the
paradigm of (constraint) logic programming [Lloyd, 1987; Jaffar and Lassez,
1987].

3 Algorithm

The overall design of our TE algorithm was inspired by the following require-
ments:

e support a complete expansion strategy

e allow lazy expansion of recursive types

e minimize the number of unifications

e make expansion parameterizable for delay and preference information

Before we describe the algorithm, we modify the syntax of TF'S to get rid of
unimportant details. First, we simplify TFS in that we omit variables. This
can be done without loss of generality if variables are directly implemented
through structure-sharing (which is the case for our system). Hence conjunc-
tive TFS have the form (7, {f1 = 01,..., fn = 0,}), whereas disjunctive are
of the form (7, {0,,...,60,}).

Given a TFS 0, type—of (0) returns the type of 6, whereas typedef (7) obtains
the type definition without inherited constraints as given by the type system
Q = (0,7). We call this TFS a skeleton. It is either (o, {61,...,60,}) or
(o, {fr =01,..., fn =0,}), where o are the direct supertype(s) of 7.
Because the algorithm should support partially expanded (delayed) types,
we enrich each TFS 6 by two flags:

1. A-ezpanded(0)=true, iff typedef (type—of (#)) and the definitions of all
its supertypes have been unified with #, and false otherwise.

2. expanded(f)=true, iff A-ezpanded(d)=true and expanded(6;)=true for
all elements 6, of TE'S 6.

Hence A-ezpanded is a local property of a TF'S that tells whether the defini-
tion of its type is already present, while expanded is a global property which
indicates that all substructures of a TFS are A-expanded. Clearly, atoms
and types that possess no features are always expanded. The exploitation of
these flags lead to a drastic reduction of the search space in the expansion
algorithm.

3.1 Basic Structure

The following functions briefly sketch the basic algorithm. It is a destructive
depth-first algorithm with a special treatment of recursive types that will be
explained in Section 3.3.

expand—ifs is the main function that initializes TE. The while loop is executed
until the TFS 6 is expanded or resolved (see below). Several passes may be
necessary for recursive TF'S.

expand—tfs(0) :=
while not (ezpanded(f) or
resolved (6) or
no unification occurred in the last pass)
depth—first—ezpand(0). /* or types—first-expand(0), resp. */

depth—first-expand and types—first—-expand recursively traverse a TFS. The
visited check is done by comparing variables (actually, structure-sharing in
the implementation makes variables obsolete). types—first—ezpand is defined
analogously by interchanging the last two lines.

depth—first-expand(6) :=
if 0 has been already visited in this pass
then return
else if 0 = (1,{61,...,6n})
then for every 0 € {61,...,0,} : depth—first—expand (6)
else /* 0 = (1,{fi=01,...,fn =0,}) */
for every 6 € {0y,...,0,} : depth—first—ezpand (9)
if not A-expanded(0) then unify-type—and-node(r,0).

unify—type—and—node destructively unifies 6 with the expanded TFS of 7.

unify-type—and-node(t,0) :=
ifr=-o
then unify—tfs (negate—fs (expand—type(o,indez)),0)
else unify—tfs (ezpand-type(t,index),0);
A-expanded(0) := true.

We adapt Smolka’s treatment of negation for our TFS [Smolka, 1989]. Note
that we only depict the conjunctive case here.

negate—fs(0 = (1,{f1 =01,..., fn =0,})) :=
return <Ta {<_'Tv {})’ <T’ {fl T})a <T7 {fl = ”eyateffs(al)}% RN
(TS 11, (T, {fn = negate—fs(6n) })})-

3.2 Indexed Prototype Memoization

The basic idea of memoization is to tabulate results of function applications
in order to prevent wasted calculations. We adapt this technique to the type
expansion function. The argument of our memoized expansion function is a
pair consisting of a type name (or a name of an lexicon entry or a rule) and an
arbitrary index that allows to access different TFS of the same type which
may be expanded in different ways (e.g., partially or fully). Such feature
structures are called prototypes.

Once a prototype has been expanded according to the attached control in-
formation, its expanded version is recorded and all future calls return a copy
of it, instead of repeating once again the same unifications:

expand—type(T, index) :=
if protomemo(t, indez) undefined
then 0 := expand-tfs(typedef (7));
protomemo(T, indez) = 0;
return copy-tfs(6)
else return copy-tfs(protomemo(r, indezx)).

Most of these computations can be done at compile time (partial evaluation),
and hence speed up unification at run time. The prototypes can serve as basic
blocks for building a partially expanded grammar.

Some empirical results show the usefulness of indexed prototype memoiza-
tion. The table on page 8 contains statistical information about the expan-
sion of an HPSG grammar with approx. 900 type definitions. About 250
lexicon entries and rules have been expanded from scratch, i.e., all types are
unexpanded (are skeletons) at the beginning.

The measurements show that memoization speeds up expansion by a factor
of 5/10 for this grammar (this factor is directly related to the number of
unifications). The time difference between the memoized and non-memoized
algorithm may be even bigger if disjunctions are involved. The sample gram-
mar contains only a few disjunctions.

3.3 Detecting Recursion

The memoization technique is also employed in detecting recursive types.
This is important in order to prevent infinite computations. We use the so-
called “call stack” of expand—type to check whether a type is recursive or not

algorithm depth—1st—expand | types—1st—expand | depth—1st—expand | types—1st-expand
memoization yes yes no no
time (secs) 45 | 23* 46 | 23* 216 218
unifications 27221 | 14495* 27207 | 14481* 155888 155876
number of 853 | *cons* 260 | *cons* 8330 | *avm* 8454 | *avm*
calls to 316 | cat-type 147 | *diff-list* 2392 | sem-expr 2503 | sem-expr
ezpand-type || 269 | *diff-list* 143 | morph-type |1379|term-type |1420|term-type
243 | morph-type 94 | nmorph-head | 1161 | *cons* 1196 | *cons*
*: with types || 208 | atomic-wff 83 | sort-expr 1003 | wff-type 1073 | wff-type
pre-expanded || 202 | rp-type 71 | atomic-wff 933 | agr-feat 951 | agr-feat
146 | conj-wff-type | 62| rp-type 880 | semantics 747 | semantics
120 | var-type 53 | subwff-inst 823 |indexed-wff | 730 |indexed-wff
63 | indexed-wff 53| cat-type 669 | var-type 697 | rp-type
59| nmorph-head | 46|sign-type 662 | rp-type 690 | var-type

(see Section 3.4). Each call of ezpand-type(r, index) will push 7 onto the call
stack. This stack then is passed to expand-tfs.
If a type 7 on top of the call stack also occurs below in the stack

(T, Ony ooy 01, Ty Py - -5 P1)

we immediate know that the types 7,0,,...,01 are recursive. Further-
more,these types form a strongly connected component (scc) of the type
dependency (or occurrence) graph, i.e., each type in the scc is reachable
from every other type in the scc. Examples for such sccs are (cons list) and
(statel) in the trace of the example below (Section 3.4).

Testing whether a type is recursive or not thus reduces to a simple find
operation in a global list that contains all sccs. The expansion algorithm
uses this information in expand—ifs to delay recursive types if the call stack
contains more than one element. Otherwise, prototype memoization would
loop.

If a recursive type occurs in a TFS and this type has already been expanded
under a subpath, and no features or other types are specified at this node,
then this type will be delayed, since it would expand forever (we call this lazy
erpansion). An instance of such a recursive type that stops is the recursive
version of list, as defined below.

3.4 Example

In the following, we define a finite state machine [Krieger et al., 1993] with
two states that accepts the language a*(a+b). The input is specified through
a list under path INPUT ; cf. the definition of type ab below. The distributed
(or named) disjunction [Eisele and Dérre, 1990] headed by $1 in type statel
is used to map input symbols to state types (and vice versa).

list = {cons, ()}

FIRST T

cons = .
REST list

we abbreviate cons via (...)

[iNpUT ([D.[2])
non-final-config = | EDGE
NEXT [INPUT]

[inpUT ()
final-config = | EDGE undef
| NEXT undef

[non-final-config
statel = | EDGE $1{a,{a,b}}
| NEXT $1 {statel, final-config}

[statel

ab = INPUT (a,b)

Let us give a trace of the expansion of type ab—the algorithm is depth—first—
expand without any delay or preference information. In this trace, we assume
that it was not known before that the types cons (abbreviated as ()), list,
and statel are recursive, hence the sccs will be computed on the fly.

step expand—type in type under path call stack

1 cons ab INPUT.REST (ab)

2 list cons REST (cons ab)

3 cons list € (list cons ab)
|= (cons list) is new scc, delay cons here]

4 cons ab INPUT (ab)

5 statel ab € (ab)

6 statel statel NEXT (statel ab)
|— (statel) is new scc, delay statel here]

7 final-config statel NEXT (statel ab)

8 non-final-config statel € (statel ab)

9 cons non-final-config INPUT (non-final-config statel ab)

10 statel ab NEXT (ab)

The result of expand—type(ab) is the following feature structure:

- ab -
INPUT ([Da.21(Blb.[4()))
EDGE

[statel

INPUT

EDGE

NEXT final-config
INPUT
EDGE undef
NEXT undef

expand-type(ab) =

NEXT

If we ran our automaton on the input abb,

abb = statel
INPUT (a, b, b)

it would be rejected: ezpand-type(abb) = fail.

3.5 Declarative Specification of Control Information

Control information for the expansion algorithm can be specified globally, lo-
cally for each prototype, as well as for a specific expand-tfs call. The following
control keywords have been implemented so far.

e :expand-function {depth|types}-first-ezpand specifies the basic expan-
sion algorithm.

o :delay { ({type | (type [pred])} {path}*) }* specifies types at path to
be delayed. path may be a feature path or a complex path pattern with
wildcard symbols *, +, ?, feature and segment variables. pred is a test
predicate to compare types, e.g., = or < (checked in unify-type-and-
node).

e {:expand|:expand-only} { ({type | (type [index [pred]])} {path}™) }*
There are two mutually exclusive modes concerning expansion of types.
If the :expand-only list is specified, only types in this list will be expand-
ed with the specified prototype indez, all others will be delayed. If the
:expand list is specified, all types will be expanded (checked in unify—
type—and—node).

e :maxdepth integer specifies that all types at paths longer than integer
will be delayed anyway (checked in unify—type—and-node).

e :attribute-preference {attribute}* defines a partial order on attributes
that will be considered in the functions depth—first—expand and types—
first-expand. The substructures at the attributes leftmost in the list

10

will be expanded first. This non-numerical preference may speed up
expansion if no numerical heuristics are known.

e :use-{conj|disj}-heuristics {t|nil} [Uszkoreit, 1991] suggested to exploit
numerical preferences to speed up unification. Both keywords control
the use of this information in functions depth—first—expand and types—
first-expand.

e resolved-predicate {resolved-p | always-false | ...} This slot specifies a
user definable predicate that may be used to stop recursion (see func-
tion expand-tfs). The default predicate is always-false which leads to a
complete expansion algorithm if no other delay information is specified.

o :ask-disj-preference If this flag is set to t, the expansion algorithm inter-
actively asks for the order in which disjunction alternatives should be
expanded (checked in depth—first-expand)

Let us give an example to show how control information can be employed.
Note that we formulate this example in the concrete syntax of TDL.

defcontrol verb
((:delay ((sign Subsumes) SYNSEM.NONLOCAL.?.SLASH))
;3 © matches INHERITED and TO-BIND
(:attribute-preference SYNSEM DTRS SUBCAT HEAD)
(:use-disj-heuristics T)
(:ignore-global-control T)
(:expand ((local initial) *)))
;5 * matches all paths in type local
:index 1.

3.6 How to Stop Recursion

Type expansion with recursive type definition is undecidable in general, i.e.,
there is no complete algorithm that halts on arbitrary input (TFS) and de-
cides whether a description is satisfiable or not (see Section 4). However,
there are several ways to stop infinite expansion in our framework:

e The first method is part of the expansion algorithm (lazy expansion)
as described before.

e The second way is brute force: use the :maxdepth slot to cut expansion
at a suitable path depth.

e The third method is to define :delay patterns or to select the :expand-
only mode with appropriate type and path patterns.

11

e The fourth method is to use the :attribute-preference list to define the
“right” order for expansion.

e Finally, one can define an appropriate :resolved-predicate that is suitable
for a class of recursive types.

4 Theoretical Results

It is worth noting that testing for the satisfiability of feature descriptions ad-
mitting recursive type equations/definitions is in general undecidable. [Rounds
and Manaster-Ramer, 1987] were the first having shown that a Kasper-
Rounds logic enriched with recursive types allows one to encode a Turing
machine. Later, [Smolka, 1989] argued that the undecidability result is due
to the use of coreference constraints. He demonstrated his claim by encoding
the word problem of Thue systems. Hence, our expansion mechanism is faced
with the same result in that expansion might not terminate.

However, we conjecture that non-satisfiability and thus failure of type ex-
pansion is, in general, semi-decidable. The intuitive argument is as follows:
given an arbitrary recursive TFS and assuming a fair type unfolding strate-
gy, the only event under which TE terminates in finite time follows from a
local unification failure which then leads to a global one. In every other case,
the unfolding process goes on by substituting types through their definitions.
Recently, [Ait-Kaci et al., 1993] have formally shown a similar result by using
the compactness theorem of first-order logic. However, their proof assumes
the existence of an infinite OSF clause (generated by unfolding a -term).
Thus our algorithm might not terminate if we choose the complete expan-
sion strategy. However, we noted above that we can even parameterize the
complete version of our algorithm to ensure termination, for instance to re-
strict the depth of expansion (analogous to the off-line parsability constraint).
The non-complete version always guarantees termination and might suffice
in practice.

Semantically, we can formally account for such recursive feature descriptions
(with respect to a type system) in different ways: either directly on the
descriptions, or indirectly through a transformational approach into (first-
order) logic. Both approaches rely on the construction of a fixpoint over a
certain continuous function.? The first approach is in general closer to an
implementation (and thus to our algorithm) in that the function which is
involved in the fixpoint construction corresponds more or less to the unifi-
cation /substitution of TFS (see for instance [Ait-Kaci, 1986] or [Pollard and
Moshier, 1990]). The latter approach is based on the assumption that TFS

“In both cases, there is, in general, more than one fixpoint, but it seems desirable to
choose the greatest one.

12

are only syntactic sugar for first-order formulae. If we transform these de-
scriptions into an equivalent set of definite clauses, we can employ techniques
that are fairly common in logic programming, viz. characterizing the models
of a definite program through a fixpoint. Take, for instance, our cyc-list
example from the beginning to see the outcome of such a transformation
(assume that cyc—list is a subtype of list):

Vr.cyc-list(x) <> Jy, z.list(x) A FIRST(z,y) AREST(z,2) Ay =1ANz==x

5 Comparison to other Approaches

To our knowledge, the problem of type expansion within a typed feature-
based environment was first addressed by Hassan Ait-Kaci [Ait-Kaci, 1986].
The language he described was called KBL and shared great similarities with
LOGIN; see [Ait-Kaci and Nasr, 1986]. However, the expansion mechanism he
outlined was order dependent in that it substituted types by their definition
instead of unifying the information. Moreover, it was non-lazy, thus it will
fail to terminate for recursive types and performs TE only at definition time
as is the case for ALE [Carpenter and Penn, 1994]. However, ALE provides
recursion through a built-in bottom-up chart parser and through definite
clauses. Allowing TE only at definition time is in general space consuming,
thus unification and copying is expensive at run time.

Another possibility one might follow is to integrate TE into the typed unifi-
cation process so that TE can take place at run time. Systems that explore
this strategy are TFS [Zajac, 1992] and LIFE [Ait-Kaci, 1993]. However, both
implementations are not lazy, thus hard to control and moreover, might not
terminate. In addition, if prototype memoization is not available, TE at run
time is inefficient; cf. the results of our grammar example on page 8). A sys-
tem that employs a lazy strategy on demand at run time is CUF [Dérre and
Dorna, 1993]. Laziness can be achieved here by specifying delay patterns as
is familiar from PROLOG. This means to delay the evaluation of a relation
until the specified parameters are instantiated.

6 Summary

Type expansion is an operation that makes constraints of a typed feature
structure explicit and determines its satisfiability. We have described an ex-
pansion algorithm that takes care of recursive types and allows to explore
different expansion strategies through the use of control knowledge. Efficien-
cy is addressed through specialized techniques: (i) prototype memoization
reduces the number of unifications, and (ii) preference information directs
the search space. Because our notion of type expansion is conceived as a

13

stand-alone module here, one can freely choose the time of its invocation,
e.g., during unification, parsing, etc.

The algorithm, as presented in the paper, has been fully implemented within
TDL [Krieger and Schiifer, 1994] and is an integrated part of the Disco
system |[Uszkoreit et al., 1994].

References

[Ait-Kaci and Nasr, 1986] Hassan Ait-Kaci and Roger Nasr. LOGIN: A logic pro-
gramming language with built-in inheritance. Journal of Logic Programming,
3:185-215, 1986.

[Ait-Kaci et al., 1993] Hassan Ait-Kaci, Andreas Podelski, and Seth Copen Gold-
stein. Order-sorted feature theory unification. Technical Report 32, Digital
Equipment Corporation, DEC Paris Research Laboratory, France, May 1993.
Also in Proceedings of the International Symposium on Logic Programming,
Oct. 1993, MIT Press.

[Ait-Kaci, 1986] Hassan Ait-Kaci. An algebraic semantics approach to the effective
resolution of type equations. Theoretical Computer Science, 45:293-351, 1986.

[Ait-Kaci, 1993] Hassan Ait-Kaci. An introduction to LIFE—programming with
logic, inheritance, functions, and equations. In Proceedings of the International
Symposium on Logic Programming, pages 5268, 1993.

[Carpenter and Penn, 1994] Bob Carpenter and Gerald Penn. ALE—the attribute
logic engine user’s guide. version 2.0. Technical report, Laboratory for Compu-

tational Linguistics. Philosophy Department, Carnegie Mellon University, Pitts-
burgh, PA, August 1994.

[Carpenter, 1992] Bob Carpenter. The Logic of Typed Feature Structures. Tracts in
Theoretical Computer Science. Cambridge University Press, Cambridge, 1992.

[Dérre and Dorna, 1993] Jochen Dérre and Michael Dorna. CUF—a formalism
for linguistic knowledge representation. In Jochen Doérre, editor, Computational
Aspects of Constraint-Based Linguistic Description 1. DYANA, 1993.

[Eisele and Dérre, 1990] Andreas Eisele and Jochen Dérre. Disjunctive unifica-
tion. IWBS Report 124, IWBS, IBM Germany, Stuttgart, 1990.

[Jaffar and Lassez, 1987] Joxan Jaffar and Jean-Louis Lassez. Constraint logic
programming. In Proceedings of the 14th ACM Symposium on Principles of
Programming Languages, pages 111-119, 1987.

[Krieger and Schifer, 1994] Hans-Ulrich Krieger and Ulrich Schiifer. TDL—a type
description language for constraint-based grammars. In Proceedings of the 15th
International Conference on Computational Linguistics, COLING-94, Kyoto,
Japan, pages 893-899, 1994.

14

[Krieger et al., 1993] Hans-Ulrich Krieger, John Nerbonne, and Hannes Pirker.
Feature-based allomorphy. In Proceedings of the 31st Annual Meeting of the
Association for Computational Linguistics, 1993. A version of this paper is
available as DFKI Research Report RR-93-28.

[Lloyd, 1987] J.W. Lloyd. Foundations of Logic Programming. Springer, 2nd edi-
tion, 1987.

[Pollard and Moshier, 1990] Carl J. Pollard and M. Drew Moshier. Unifying par-
tial descriptions of sets. In P. Hanson, editor, Information, Language, and
Cognition. Vol. 1 of Vancouver Studies in Cognitive Science, pages 285-322.
University of British Columbia Press, 1990.

[Pollard and Sag, 1987] Carl Pollard and Ivan A. Sag. Information-Based Syntaz
and Semantics. Vol. I: Fundamentals. CSLI Lecture Notes, Number 13. Center
for the Study of Language and Information, Stanford, 1987.

[Rounds and Manaster-Ramer, 1987] William C. Rounds and Alexis Manaster-
Ramer. A logical version of functional grammar. In Proceedings of the 25th
Annual Meeting of the Association for Computational Linguistics, pages 89-96,
1987.

[Shieber et al., 1983] Stuart Shieber, Hans Uszkoreit, Fernando Pereira, Jane
Robinson, and Mabry Tyson. The formalism and implementation of PATR-
II. In Barbara J. Grosz and Mark E. Stickel, editors, Research on Interactive
Acquisition and Use of Knowledge, pages 39-79. AI Center, SRI International,
Menlo Park, Cal., 1983.

[Shieber, 1986] Stuart M. Shieber. An Introduction to Unification-Based Ap-
proaches to Grammar. CSLI Lecture Notes, Number 4. Center for the Study of
Language and Information, Stanford, 1986.

[Smolka, 1989] Gert Smolka. Feature constraint logic for unification grammars.
IWBS Report 93, IWBS, IBM Germany, Stuttgart, November 1989. Also in
Journal of Logic Programming, 12:51-87, 1992.

[Uszkoreit et al., 1994] Hans Uszkoreit, Rolf Backofen, Stephan Busemann, Ab-
del Kader Diagne, Elizabeth A. Hinkelman, Walter Kasper, Bernd Kiefer, Hans-
Ulrich Krieger, Klaus Netter, Giinter Neumann, Stephan Oepen, and Stephen P.
Spackman. DISCO—an HPSG-based NLP system and its application for ap-
pointment scheduling. In Proceedings of COLING-94, Kyoto, Japan, pages 436—
440, 1994. A version of this paper is available as DFKI Research Report RR-
94-38.

[Uszkoreit, 1991] Hans Uszkoreit. Strategies for adding control information to
declarative grammars. In Proceedings of the 29th Meeting of the Association for
Computational Linguistics (ACL), pages 237-245, 1991.

[Zajac, 1992] Rémi Zajac. Inheritance and constraint-based grammar formalisms.
Computational Linguistics, 18(2):159-182, 1992.

15

