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Abstract

Unification-based grammar formalisms have become the predominant paradigm in natural
language processing and computational linguistics. Their success stems from the fact that
they can be seen as high-level declarative programming languages for linguists which allow
them to express linguistic knowledge in a monotonic fashion. Moreover, such formalisms can
be given a precise, set-theoretical semantics.

This paper presents TDL, a typed feature-based language which is specifically designed to sup-
port highly lexicalized grammar theories like HPSG, FUG, or CUG. TDL offers the possibility
to define (possibly recursive) types, consisting of type constraints and feature constraints over
the standard connectives A, V, and -, where the types are arranged in a subsumption hier-
archy. 7DL distinguishes between avm types (open-world reasoning) and sort types (closed-
world reasoning) and allows the declaration of partitions and incompatible types. Working
with partially as well as with fully expanded types is possible, both at definition and at run
time. 7DL is incremental, i.e., it allows the redefinition of types and the use of undefined
types. Efficient reasoning is accomplished through specialized modules.

Topic Areas: Type and Feature Constraints, Disjunction and Negation, Type Hierarchies.
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1 Introduction

Over the last few years, unification-based (or more general: constraint-based) grammar formalisms
have become the predominant paradigm in natural language processing and computational linguis-
tics.! Their success stems from the fact that they can be seen as a monotonic, high-level repre-
sentation language for linguistic knowledge, where a dedicated parser /generator or a uniform type
deduction mechanism acts as the inference engine. The main idea of representing as much linguistic
knowledge as possible through a unique data type called feature structures, allows the integration
of different description levels, starting with phonology and ending in pragmatics, therefore a fea-
ture structure directly serves as an interface between the different description stages, which can
be accessed by a parser or a generator at the same time. In this context, unification is concerned
with two different tasks: (i) combining information (unification is a structure-building operation),
and (ii) rejecting inconsistent knowledge (unification determines the satisfiability).

While the first approaches relied on annotated phrase structure rules (for instance GPSG [Gazdar
et al. 85] and PATR-II [Shieber et al. 83], as well as their successors CLE [Alshawi 92] and
ELU [Russell et al. 92]), modern formalisms try to specify grammatical knowledge as well as
lexicon entries merely through feature structures. In order to achieve this goal, one must enrich
the expressive power of the first unification-based formalisms with different forms of disjunctive
descriptions (atomic disjunctions, general disjunctions, distributed disjunctions etc.). Later, other
operations came into play, viz., (classical) negation or implication. Full negation however can be
seen as an input macro facility because it can be expressed through the use of disjunctions, negated
coreferences, and negated atoms with the help of existential quantification as shown in [Smolka
88]. Other proposals considered the integration of functional and relational dependencies into the
formalism which makes them Turing-complete in general.? However the most important extension
to formalisms consists of the incorporation of types, for instance in modern systems like TFS [Zajac
92], CUF [Dérre & Eisele 91], or TDL [Krieger & Schiifer 93a). Types are ordered hierarchically (via
subsumption) as it is known from object-oriented programming languages. This leads to multiple
inheritance in the description of linguistic entities (see [Daelemans et al. 92] for a comprehensive
introduction). Finally, recursive types are necessary to describe at least phrase-structure recursion
which is inherent in all grammar formalisms which are not provided with a context-free backbone.

Martin Kay was the first person who laid out a generalized linguistic framework, called unification-
based grammars, by introducing the notions of extension, wunification, and generalization into
computational linguistics. Kays Functional Grammar [Kay 79] represents the first formalism
in the unification paradigm and is the predecessor of strictly lexicalized approaches like FUG
[Kay 85], HPSG [Pollard & Sag 87; Pollard & Sag 93] or UCG [Moens et al. 89]. Pereira and
Shieber were the first to give a mathematical reconstruction of PATR-II in terms of a denotational
semantics [Pereira & Shieber 84]. The work of Karttunen led to major extensions of PATR-II,
concerning disjunction, atomic negation, and the use of cyclic structures [Karttunen 84]. Kasper
and Rounds’ seminal work is important in many respects: they clarified the connection between
feature structures and finite automata, gave a logical characterization of the notion of disjunction,
and presented for the first time complexity results (see [Kasper & Rounds 90] for a summary).
Mark Johnson then enriched the descriptive apparatus with classical negation and showed that
the feature calculus is a decidable subset of first-order predicate logic [Johnson 88]. Finally, Gert
Smolka’s work gave a fresh impetus to the whole field: his approach is distinguished from others
in that he presents a sorted set-theoretical semantics for feature structures [Smolka 88; Smolka
89]. Moreover, Smolka gave solutions to problems concerning the complexity and decidability of
feature structure descriptions. Paul King’s work aims to reconstruct a special grammar theory,
viz. HPSG, in mathematical terms [King 89)], whereas the Backofen and Smolka’s treatment is the

1[Shieber 86] and [Uszkoreit 88] give an excellent introduction to the field of unification-based grammar theories.
[Pereira 87] makes the connection explicit between unification-based grammar formalisms and logic programming.
[Knight 89] presents an overview to the different fields in computer science which make use of the notion of
unification.

2For instance, Carpenter’s ALE system [Carpenter 92a] gives a user the opportunity to define definite clauses,
using disjunction, negation, and Prolog cut.



most general and complete one, bridging the gap between logic programming and unification-based
grammar formalisms [Backofen & Smolka 92]. There exist only a few other proposals to feature
structures nowadays which do not use standard first order logic directly, for instance Reape’s
approach, using a polymodal logic [Reape 91].

2 Motivation

Modern typed unification-based grammar formalisms (like TFS, CUF, or 7DL) differ from early
untyped systems like PATR-IT in that they highlight the notion of a feature type. Types can
be arranged hierarchically, where a subtype inherits monotonically all the information from its
supertypes and unification plays the role of the primary information-combining operation. A type
definition can be seen as an abbreviation for a complex expression, consisting of type constraints
(concerning the sub-/supertype relationship) and feature constraints (stating the appropriate val-
ues of attributes) over the standard connectives A, V, and —. Types can therefore lay foundations
for a grammar development environment because they might serve as abbreviations for lexicon
entries, ID rule schemata, and universal as well as language-specific principles as is familiar from
HPSG. Besides using types as a referential mean as templates are, there are other advantages as
well which however cannot be accomplished by templates:

e EFFICIENT PROCESSING

Certain type constraints can be compiled into more efficient representations like bit vectors
(see [Ait-Kaci et al. 89]), where a GLB (greatest lower bound), LUB (least upper bound), or
a = (type subsumption) computation reduces to low-level bit manipulation (see section 3.2).
Moreover, types release untyped unification from expensive computation, e.g., through the
possibility of declaring them incompatible. In addition, working with type names only or
with partially expanded types, minimizes the costs of copying structures during processing.
This can only be accomplished if the system makes a mechanism for type expansion available
(see section 3.4).

e TYPE CHECKING
Type definitions allow a grammarian to declare which attributes are appropriate for a given
type and which types are appropriate for a given attribute, therefore disallowing to write
inconsistent feature structures. Again, type expansion is necessary to determine the global
consistency of a given description.

e RECURSIVE TYPES
Recursive types give a grammar writer the opportunity to formulate certain functions or
relations as recursive type specifications. Working in the Parsing as Deduction [Pereira 83]
paradigm enforces a grammar writer to replace the context-free backbone through recursive
types. Here, parameterized delayed type expansion is the ticket to the world of controlled
linguistic deduction [Uszkoreit 91] (see section 3.4).

3 TDC

TDL is a unification-based grammar development environment and run time system supporting
HPSG-like grammars. Work on 7DL has started at the end of 1988 in the DISCO project of
the DFKI and led to 7DLExtraLight, the predecessor of TDL [Krieger & Schifer 93b]. The
DISCO grammar currently consists of more than 700 type specifications written in 7DL and is
the largest HPSG grammar for German [Netter 93]. Grammars and lexicons written in 7DL can
be tested by using the parser of the DISCO system. The parser is a bidirectional bottom-up
chart parser, providing a user with parameterized parsing strategies as well as giving him control
over the processing of individual rules [Kiefer 93]. The core machinery of DISCO consists of 7DL
(see below) and the feature constraint solver UDiNe [Backofen & Weyers 93]. UDiNe itself is a
powerful untyped unification machinery which allows the use of distributed disjunctions, general
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Figure 1: Interface between 7DL and UDiNe. Depending on the type hierarchy and the type of
and [2], TDL either returns c (c is definitely the GLB of a and b) or a Ab (open-world reasoning)
resp. L (closed-world reasoning) if there doesn’t exist a single type which is equal to the GLB of a
and b. In addition, TDL determines whether UDiNe must carry out feature term unification (yes)
or not (no), i.e., the return type contains all the information one needs to work on properly (fail
signals a global unification failure).

negation, and functional dependencies. The modules communicate through an interface, and this
communication mirrors exactly the way an abstract type unification algorithm works: two typed
feature structures can only be unified if the attached types are definitely compatible. This is
accomplished by the unifier in that UDiVe handles over two typed feature structures to TDL
which gives back a simplified form (plus additional information; see Fig. 1). The motivation for
separating type and feature constraints and processing them in dedicated modules (which again
might consist of specialized components as is the case in TDL) is twofold: (i) it reduces the
complexity of the whole system, thus making the architecture much clearer, and (ii) leads to a
faster system performance because every dedicated module is designed to cover only a specialized
task.

We will now turn our focus to the main ingredients, T7DL consists of (see Fig. 2). We start with a
general overview of the language and then have a closer look on certain modules of the system.

3.1 7TDL Language

TDL supports type definitions consisting of type constraints and feature constraints over the
standard operators A, V, -, and @ (xor). The operators are generalized in that they can connect
feature descriptions, coreference tags (logical variables) as well as types. TDL distinguishes between
avm types (open-world semantics), sort types (closed-world semantics), and built-in types. In
asking for the greatest lower bound of two avm types a and b which share no common subtype,
TDL always returns a A b (open-world reasoning), and not L. The opposite case holds for sort
types. Furthermore, sort types differ in another point from avm types in that they are not further
structured, like atoms are. Moreover, TDL offers the possibility to declare exhaustive and disjoint
partitions of types, for example sign = word @ phrase which expresses the fact that (i) there are
no other subtypes of sign than word and phrase, (ii) the sets of objects denoted by these types
are disjoint, and (iii) the disjunction of word and phrase can be rewritten (during processing) to
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Figure 2: Architecture of TDL. The control machinery of TDL is called either by UDiNe during
run time or by a user at definition time.

sign. In addition, one can declare sets of types as incompatible, meaning that the conjunction of
them yields L.

TDL allows a grammarian to define and use parameterized templates (macros). There exists a
special instance definition facility to ease the writing of lexicon entries which differ from normal
types in that they are not entered into the type hierarchy. Strictly speaking, lexicon entries can be
seen as the leaves in the type hierarchy which do not admit further subtypes (see also [Pollard &
Sag 87], p. 198). This dichotomy is the analogue to the distinction between classes and instances
in object-oriented programming languages. Input given to TDL is parsed by a Zebu-generated
LALR(1) parser [Laubsch 93] to allow for an intuitive, high-level input syntax and to abstract
from uninteresting details imposed by the unifier and the underlying LI1SP system.

The kernel of 7DL (and of most other monotonic systems) can be given a set-theoretical semantics
along the lines of [Smolka 88]. It is easy to translate 7DL statements into denotation-preserving
expressions of Smolka’s feature logic, thus viewing 7DL only as syntactic sugar for a restricted
(decidable) subset of first-order logic. Take for instance the following feature description ¢ written
as an attribute-value matrix:



np
agreement

¢ = | AGR NUM sg
PERS 3rd

SUBJ

It is not hard to rewrite this two-dimensional descriprtion to a flat first-order formula, where
attributes/features (e.g., AGR) are interpreted as binary predicate symbols and sorts (e.g., np) as
unary predicates:

Az . np(p) A AGR(®, x) A agreement(x) A NUM(z, sg) A PERS(x, 3rd) A SUBJ(¢, x)

The corresponding TDL type definition of ¢ looks as follows (actually & is used on the keyboard
instead of A):

¢ := np A [AGR #1 A agreement A [NUM sg, PERS 3rd],
SUBJ #1].

3.2 Type Hierarchy

The type hierarchy is either called directly by the control machinery of 7DL during the definition
of a type (type classification) or indirectly via the simplifier both at definition and at run time
(type unification).

3.2.1 Encoding Method

The implementation of the type hierarchy is based on Ait-Kaci’s bit vector encoding technique
for partial orders [Ait-Kaci et al. 89]. Every type t is assigned a code y(t) (represented through a
bit vector) such that +(¢) reflects the reflexive transitive closure of the subsumption relation with
respect to t. Decoding a code c is realized either by a hash table look-up (iff 3t. . y~1(c) = t.) or by
computing the ‘maximal restriction’ of the set of types whose codes are less than ¢. Depending on
the encoding method, the hierarchy occupies O(n logn) (compact encoding) resp. O(n?) (transitive
closure encoding) bits. Here, GLB/LUB operations directly corresponds to bit-or/and instructions.
GLB, LUB and =< computations have the nice property that they can be carried out in this
framework in O(n) (resp. O(1) on an ideal machine), where n is the number of types.?

The method has been modified to open-world reasoning over avm types in that potential GLB/LUB
candidates (calculated from their codes), must be verified by inspecting the type hierarchy through
a sophisticated graph search. Why so? Take the following example to see why this is necessary:

rT:=yAz
2=y A2 Aal]

During processing, one can definitely substitute y A z through z, but rewriting ¥y’ A 2’ to z’ is
not correct, because x' differ from y' A z’—=x' is more specific as a consequence of the feature
constraint @ = 1. Therefore we made a distinction between the ‘internal’ greatest lower bound
GLB<, concerning only the type subsumption relation by using Ait-Kaci’s method alone (which
is used for sort types) and the ‘external’ one GLBL which takes the subsumption relation over
feature structures into account. The same distinction is made for LUBs.

With GLB< and GLBc in mind, we can define a generalized GLB operation informally by the
following table. This GLB operation is actually used during type unification.

3 Actually, one can choose in 7DL between the two encoding techniques and between bit vectors and bignums for
the representation of the codes. Operations on bignums are a magnitude faster than the corresponding operations
on bit vectors.



| GLB | avmy | sort; | atom; | feat_constr; |

avme see 1. L 1 see 2.
sorte 1 see 3. | see 4. 1L
atomg 1 see 4. | see 5. L
feat_constrs || see 2. L 1 see 6.
where
avmg <= avmg = GLBc(avm;, avmys)
1 avm; < avmy; = avms
") L1<= 1 =GLB<(avm;, avmg) (through an explicit incompatibility declaration)
avmy A avmg, otherwise (open-world semantics)
9 avmy g <= expand-type(avmy g) M feat_constrg,; # L
) 1, otherwise
sortg <= sorts = GLB<(sort;, sortp)
3. sort; <= sort; = sorts
1, otherwise (closed-world semantics)
4 atom; g <= type-of(atom; g) <X sorte 1, (sortg ; is a built-in type)
) 1, otherwise
5 atom; <= atom; = atoms
’ 1, otherwise
T <= feat_constr; N feat_constrg # L
6. .
1, otherwise

The encoding algorithm is extended to cope with the redefinition of types and the use of undefined
types, an essential part of an incremental grammar /lexicon development system. Redefining a type
means not only to make changes local to this type. Instead, one has to redefine all dependents
of this type—all subtypes, in case of a conjunctive type definition and all disjunction elements
for a disjunctive type specification plus, in both cases, all types which mention these types in
their definition. The dependent types of a type t can be characterized graph-theoretically via the
strongly connected components (SCC) of ¢ with respect to the dependency relation. It is important
to redefine the dependents in the ‘right’ order to obtain a new consistent type hierarchy.*

3.2.2 Decomposing Type Definitions

Conjunctive, e.g., z := y A z and disjunctive type specifications, e.g., ' := y' V 2/ are entered
differently into the hierarchy: z inherits from its supertypes y and z, whereas z' defines itself
through its elements 3’ and z'.> This distinction is represented through the use of different
kinds of edges in the type graph (bold edges denote disjunction elements, see Fig. 4). But it is
worth noting that both of them express subsumption (z < y and z’ > 3’ in the above example)
and that the GLB/LUB operations must work properly over ‘conjunctive’ as well as ‘disjunctive’
subsumption links.

TDL decomposes complex definitions consisting of A, V, and — by introducing intermediate types,
so that the resulting expression is either a pure conjunction or a disjunction of type symbols.
Intermediate type names are enclosed in vertical bars (cf. the intermediate types |u A v| and
|u Av Aw| in Fig. 3).

4Enriching the type hierarchy with dependency links leads in general no longer to a cycle-free graph. So it is
not obvious how to establish a topological order on the set of types. However, one can topologically sort the SCCs
of the hierarchy without dependency links (which leads to a total order with respect to a certain SCC) and then
implode the SCCs of the hierarchy into nodes which ultimately leads to a DAG which itself can be totally ordered.

5S0 one can see conjunctive types as top-down specialization of their supertypes and disjunctive ones as bottom-up
generalization of their disjunction elements.
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Figure 4: Decomposing a := b @ ¢, such that a inherits from the intermediates |bV¢| and |-bV-c|.

The same technique is applied when using @ (see Fig. 4). @ will be decomposed into A, V and
-, plus additional intermediates. For each negated type —t, TDL introduces a new intermediate
type symbol |—t| with the definition —¢ and declares it incompatible with ¢ (see section 3.2.3). In
addition, if ¢ is not already present, TDL will add ¢ as a new type to the hierarchy (see types |—b|
and |—¢| in Fig. 4).

Let’s consider the example a := b @ ¢. The decomposition performed by TDL can then be stated
informally by the following rewrite steps (assuming that CNF is switched on):

a:=b®c
a:={bBA-c)V(-bAc)
a:=bV-bADBVeA(=DV-c)A(-eVc)
a:=(bVe)A(=bV c)
= |bVe| A |[bV ¢

where [bVc| := bV ¢, [2bVc| := |2b| V |=c|, |2b] := =b, [=¢| = —e, Lip-p) = bA|2b], and
J_{C,_,c} =cA |—|C|.
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Figure 5: Bottom propagation triggered through the subtypes d and e of b, so that a A d A ¢ as
well as a A e A ¢ will simplify to L during processing.

If disjunctive normal form instead is enforced by the user, the decomposition of a := b @ ¢ leads
of course to a different type hierarchy:
a:=bdc
=(bA-c)V(=bAc)
= |b/‘\—|c| \Y |—|b/‘\c|

where |bA—c| := b A |=c|, [7bAc| == |=b| Ac, |nc| == me, [2b] := =b, Ly -4y = b A|2b|, and
Licmc} :=CA | e

3.2.3 Incompatible Types and Bottom Propagation

Incompatible types lead to the introduction of specialized bottom symbols (see Fig. 4 and 5) which
are however identified in the underlying logic (this is related to the construction of a separated sum
in domain theory). These bottom symbols must be propagated downwards by a mechanism called
bottom propagation which takes place at definition time (see Fig. 5). Note that it is important
to take not only subtypes of incompatible types into account but also disjunction elements as the
following example shows:

y aANbi=Land aANby = L

1L =aAb. bottom propagation
{ b:=b1V bs. }

One might expect that incompatibility statements together with feature term unification lead no
longer to a monotonic, set-theoretical semantics. But this is not the case. To preserve monotonic-
ity, one must assume a 2-level interpretation of typed feature structures, where feature constraints
and type constraints can denote different sets of objects and the global interpretation is deter-
mined by the intersection of the two sets. Take for instance the type definitions A := [a 1] and

= [b 1], plus the user declaration L = A A B that A and B are incompatible. Then A A B
will simplify to L although the corresponding feature structures of A and B successfully unify to
[a1,b1].

3.3 Symbolic Simplifier

The simplifier operates on arbitrary TDL expressions. Simplification is done at definition time as
well as at run time when typed unification takes place (cf. Fig. 1).



The main issue of symbolic simplification is to avoid (i) unnecessary feature constraint unification
and (ii) queries to the type hierarchy by simply applying ‘syntactic’ reduction rules. Consider an
expression like 1 Axs...Ax;... A—xz;... A z,. Symbolic simplification will detect L by simply
applying syntactic reduction rules.

The simplification schemata are well known from the propositional calculus, e.g., De Morgan'’s
laws, idempotence, identity, absorption, etc. They are hard-wired in COMMON LISP to speed
up computation. Formally, type simplification in 7DL can be characterized as a term rewriting
system. A set of reduction rules is applied until a normal form is reached. Confluency and
termination is guaranteed by imposing a total generalized lexicographic order on terms (either
CNF or DNF). In addition, this order has the nice effects of neglecting commutativity (which is
expensive and might lead to termination problems): there is only one representative for a given
formula. Therefore, memoization is cheap and is employed in TDL to reuse precomputed results
of simplified expressions (one must not cover all permutations of a formula). Additional reduction
rules are applied at run time using ‘semantic’ information of the type hierarchy (GLB, LUB, and
<).

3.3.1 Type Expressions

TDL type expressions are recursively defined as follows:®

e any type symbol is a valid type expression,

any atom (a quoted symbol, a string or a number) is a valid type expression,

e if t1,...,t, are valid type expressions, the conjunction t; A---At, is a valid type expression
(n>0),

e if t1,...,t, are valid type expressions, the disjunction t1V ---V t, is a valid type expression
(n > 0),

if ¢ is a valid type expression, its negation —t is a valid type expression,

nothing else is a type expression.

Symbols and negated symbols are also called literals.

3.3.2 Normal Form

In order to reduce an arbitrary type expression to a simpler expression, simplification rules must
be applied. So we have to define what it means for an expression to be ‘simple’. We choose
the conjunctive (or disjunctive) normal form. A type expression is in conjunctive normal form
(CNF), if it is a literal, or a conjunction of literals, or a conjunction of disjunctions of literals.
The definition of disjunctive normal form (DNF) is the dual counterpart. In TDL, the user may
choose between CNF and DNF. The advantages of CNF/DNF are:

e UNIQUENESS
Type expressions in normal form are unique modulo commutativity. Sorting type expressions
according to a total lexicographic order will lead to a total uniqueness of type expressions
(see section 3.3.4).

e LINEARITY
Type expressions in normal form are linear. Any arbitrarily nested expression may be
transformed into a ‘flat’ expression. This may reduce the complexity of later simplifications,
e.g., at run time.

SFor the sake of simplicity, we do not distinguish between sort and avm types here, both are subsumed by the
notion of type in this section.

10



e COMPARABILITY
This property is a consequence of the two properties mentioned before. Unique and linear
expressions make it easy to find or compare (sub)expressions. This is important for the
memoization technique described in section 3.3.6.

3.3.3 Reduction Rules

The current implementation of the simplifier uses the following hard-wired reduction rules (only
the ‘conjunctive’ schemata are depicted—the dual set of disjunctive rules are applied as well):

_|_|f
dbl_neg
f
demorgan M
distrib N NGV V)N Afn
(GUAFLAANF)V -V (gmAfL A A f)
flatten FinN---Ng A ANgm)N--- A fn
fIN---ANGAN---ANGgmN---Afn
idempot fl/\"'/\g/\---/\g/\.../\fn
finh---AgA---Af,
absorpt JiNARA--A(@V--VAV---Vgu)A---Afp
fiA-"ARA---Afn
inversel AN ANgN---AN=gN---Nf,
1
inverse2 fiN---ANLA---Afp
1
-T
inverse3 o0
1
neutr_el fiNATA-Afp
) fin-Afn
1
identity M
fi
Aoz §:
pty =

Note that only one of the two distributivity rules is applied depending on the chosen normal form
(CNF or DNF). Otherwise simplification might not terminate.

In order to reach a normal form, it would suffice to apply only the rules dbl_neg, demorgan and
distrib. But in the worst case, the application of these three rules would blow up the length of the
normal form to exponential size (compared with the number of literals in the original expression).
To avoid this, the other rules are used intermediately. If they can be applied, they always reduce
the length of the (sub)expressions.

11



3.3.4 Lexicographic Order

In order to avoid the application of the commutativity rule, we introduce a lexicographic order on
type expressions. Together with DNF/CNF, we get a unique sorted normal form for an arbitrary
type expression. This guarantees confluency and fast comparability of type expressions.

First of all, we define the order x <yr y on n-ary normal forms by the following table, with
symbol <yr neg_symbol <yr conjunction <y disjunction:

Lz y — [ symbol | negsymbol | conjunction [ disjunction |
symbol T <jez Y true true true
neg_symbol false 1 <lez Y1 true true
conjunction false false Vi:x; <NF Y true
disjunction false false false Vi:z; <nr yi

where 1 < i < max(|z|, [y|) and <je; is a total lexicographic order on strings (resp. symbol names),
e.g. the predicate STRING< in COMMON LisP, for example:

a<yrb<nyrbb<yr-a<yraANb<yraAN—-a<yrpaVb<yraVbVc

We then extend < yr for atomic values, such that disjunction <yr atomic_symbol <xr string <y
number. The following matrix is the continuation of the table above at its lower right corner
(1 < < max(|z|, [y)):

e y — || disjunction | atomic_symbol | string | number ]
disjunction Vi:x; <nF Y; true true true
atomic_symbol false T <lez Y true true
string false false T1 <lex Y1 true
number false false false <y

3.3.5 Using Information from the Type Hierarchy

Especially at run time, but also at definition time, it is useful to exploit information from the type
hierarchy. Further simplifications are possible by using the following rules (it is possible to switch
off the use of type hierarchy information at any time). Again, the two dual disjunctive schemata
are used as well (extension/LUB).

fiN---AgA---ARA---Afn
FiN--“AgA---Afn

fl/\.../\fn
g

subsumption

, where g < h

GLB , where g = GLB(f1,...,fn)

3.3.6 Memoization

The memoization technique described by [Norvig 91] has been adapted in order to reuse precom-
puted results of type simplification. There are four memoization hash tables for each TDL type
domain: for CNF with/without hierarchy and DNF with/without hierarchy. The lexicographically
sorted normal form described in section 3.3.4 guarantees fast access to precomputed type simpli-
fications. Memoization results are also used by the recursive simplification algorithm to exploit
precomputed results for subexpressions.

Some empirical results show the usefulness of memoization. The DISCO grammar for German
consists of 750 types, 35 templates, and a toy lexicon of 170 instances/entries. After a full type
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expansion of all instances, the memoization hashtables contain 4413 entries (literals are not mem-
oized). 194849 results have been reused at least once (some up to 1000 times) of which 84.6 %
are proper simplifications (i.e., the simplified formulae are really shorter than the unsimplified
formulae).

3.4 Type Expansion and Control

As we noted earlier, types allow us to refer to complex constraints through the use of a symbol
name. In order to reconstruct the constraints which determine a type (represented as a feature
structure), we require a complex operation called type erpansion. This operation is comparable
to Carpenter’s well-typedness [Carpenter 92b).

3.4.1 Motivation

In TDL, the motivation for type expansion is manifold:

® CONSISTENCY
The global consistency /satisfiability of a type expression can in general only be decided
through type expansion. At definition time, type expansion determines whether a type
definition is consistent. At run time, type expansion is involved in checking the consistency
of the unification of two typed feature structures.

e ECONOMY
From the standpoint of efficiency, it does make sense to work only with small, partially
expanded structures (if possible) to speed up feature term unification and to reduce the
amount of copying. At last however, at the end of processing, one has to make the result
(the constraints) explicit.

e RECURSION
Recursive types are inherently present in modern constraint-based grammar formalisms like
HPSG which are not provided with a context-free backbone. Moreover, if the formalism does
not allow functional or relational constraints, one must specify certain functions/relations
like append through recursive types. Take for instance Ait-Kaci’s version of append [Ait-Kaci
86] which can be stated in TDL as follows:

appendy := [FRONT < >,
BACK #1 A list,
WHOLE #1 ].
append; := [FRONT < #first. #rest] >,
BACK #back A list,
WHOLE < #first. #rest2 >,
PATCH appendA [FRONT #restl,
BACK #back,
WHOLE #rest2]].
append = appendy V append; .

e TYPE DEDUCTION

Parsing and generation can be seen in the light of type deduction as a uniform process,
where only the phonology (for parsing) or the semantics (for generation) must be given as
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the following simplified example illustrates:

Parsing: phrase
& | pHON ( “John” “likes” “bagels” )
phrase
. ELN Ui
Generation: R like

SEM ARG1|IND|RESTR|NAME john
ARG2 | IND |RESTR|RELN bagel

Type expansion (together with a sufficient specified grammar) then is responsible (in both
cases) for constructing a fully specified feature structure which is maximal informative and
compatible with the input structure. However, the system TFS has shown that type expan-
sion without sophisticated control strategies is hopelessly inefficient and moreover does not
guarantee termination.

3.4.2 Controlled Type Expansion

Uszkoreit introduced in [Uszkoreit 91] a new strategy for linguistic processing called controlled
linguistic deduction. His approach permits the specification of linguistic performance models
without giving up the declarative basis of linguistic competence, especially monotonicity and
completeness. The evaluation of both conjunctive and disjunctive constraints can be controlled in
this framework. For conjunctive constraints, the one with the highest failure probability should
be evaluated first. For disjunctive ones, a success probability is used instead. The alternative with
the highest success probability is used until a unification fails, in which case one has to backtrack
to the next best alternative.

TDL will support this strategy in that every feature structure is associated with its success/failure
potential such that type expansion can be sensitive to these settings. Moreover, one can make
other decisions as well during type expansion.

e use the failure/success probabilities or not

stick to breadth-first or depth-first type expansion

only regard structures which are subsumed by a given type

take into account only structures under certain paths

set the depth of type expansion for a given type

Note that we are not restricted to apply only one of these settings—they can be used in combination
and can be changed dynamically during processing. Some of these software switches have been
realized in the current implementation of TDL’s type expansion mechanism. The next version
will incorporate all of them and will be integrated into a declarative specification language which
allows linguists to define control knowledge that can be used during processing.
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