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Abstract

We present data-driven methods for the acquisition of LF€dueces from
two German treebanks. We discuss problems specific to gemiford or-
der languages as well as problems arising from the datastasdetermined
by the design of the different treebanks. We compare two wagscoding
semi-free word order, as done in the two German treebankisayue that
the design of the TiGer treebank is more adequate for theisitiqn of LFG
resources. Furthermore, we describe an architecture f&r glammar ac-
quisition for German, based on the two German treebanks;amgare our
results with a hand-crafted German LFG grammar.

1 Introduction

Traditionally, deep, wide-coverage linguistic resouraes hand-crafted and their
creation is time-consuming and costly. Much effort has breade to overcome this
problem by automatically inducing linguistic resourcdelrich, deep grammars,
lexicons and subcategorisation frames from corpora. Maskwo far has con-
centrated on English, like that of Hockenmaier and Steed[2@®2], Nakanishi
et al. [2004] and Cabhill et al. [2002, 2004]. They presentcsssful approaches
for the acquisition of deep linguistic resources from thariRB treebank, using
different grammar frameworks like CCG, HPSG and LFG. Ehglowever, is a
configurational language, where strict word-order consisahelp to disambiguate
predicate-argument structure. Porting these approachesemi-free word order
language, we have to ask: How good can it get? Can we expeiarsiesults
when dealing with (semi-) free word order? Can data-drivethmds cope when
dealing with ambiguous data structures and sparse datseddny a rich(er) mor-
phology in combination with case syncretism? And, furthemen what impact
does treebank design have on the automatic acquisitiongiiktic resources like
deep grammars?

This paper describes approaches to treebank-based doqui$iLFG resources
for a semi-free word order language, based on the method hifl @aal. [2002,
2004, 2008], Burke et al. [2004] and O’Donovan et al. [200#)0 presented the
large-scale acquisition of LFG grammars and lexical resmaifrom the English
Penn-1l and Penn-lll treebanks. They also presented wodatardriven multilin-
gual unification grammar development for Spanish, ChineseGerman. While
results point to treebank-based grammar acquisition bewngiversal method, re-
sults for other languages are by far lower than the ones athifr English and
the English Penn treebank.

There are different possible reasons for this: first of b, $ize of the English
Penn-1l treebank, which is much larger than most treebaoksther languages,
might be responsible for the good results on English. Anati@son might be the
configurational English word order, where strict constiaitletermine the gram-
matical function of a lexical unit in a certain surface psit Finally, the good
results for English might be due to the data structures eysplon the Penn-Ii



treebank, which might be optimised for the task at hand ans itmprove perfor-
mance on the English data.

In this paper we develop different f-structure Annotatiolga@ithms for Ger-
man, based on two German treebanks with crucially diffeamiotation schemes,
adapted to feature sets of varying granularity as repredentthree different gold
standards. We discuss problems specific to the annotath@mszs of the two tree-
banks as well as to language-specific properties of Germheareathe variability
in word order and the richer morphology (compared to Enyliéten result in data
sparseness, causing severe problems for data-driven dsettionally, we com-
pare the performance of our data-driven grammar acquiséighitectures with
the hand-crafted German ParGram LFG of Dipper [2003], Radmd Forst [2006],
and Forst [2007].

The paper is structured as follows: Section 2 gives an ogeraf typological
properties of German and their representation in two diffeGerman treebanks.
Section 3 describes the LFG grammar acquisition architedar German, focus-
ing on the differences to the work of Cahill et al. [2003, 2p&bd Cahill [2004].
Section 4 reports on the automatic generation of LFG f-aires and discusses
problems specific to semi-free word order and to the desighefGerman tree-
banks. Section 5 presents a comparison of our best aut@iya@cquired LFG
grammar with related work, namely the hand-crafted ParAQr&@ for German.
The last section concludes.

2 Typological Properties of German and their Represen-
tation in Two German Treebanks

German, like English, belongs to the Germanic languagelyanblespite being
closely related, there are crucial differences betweertviloelanguages. One of
them is the semi-free word order in German, which contragtstive more config-
urational English; another, but related difference comséne richer morphology in
German, compared to the rather impoverished English mérgiroBoth proper-
ties are reflected in the treebank data structures usedreseayi syntactic analyses
of the particular languages.

2.1 TiGer and TuBa-D/Z: Two German Treebanks

The TiGer treebank [Brants etal., 2002] and the TiBa-D/Aljdann et al., 2005]

are two German treebanks with text from the same domain, lyare@/spaper text.

Both treebanks are annotated with phrase structure trepsndency (grammatical
relation) information and POS tags, using the Stuttgartiigdn Tag Set (STTS)
[Schiller et al., 1995]. Differences regard the set of catizg node labels used for
syntactic annotation and the set of grammatical functitrela TiGer annotates
25 different syntactic categories and distinguishes betwgt different grammat-
ical functions, while the TiBa-D/Z uses 26 different sytitacategories and 40
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Doch ohne die Tiger wird es keinen Frieden geben
doch ohne der Tiger werden es kein Frieden geben
KON  APPR ART NN VAFIN PPER PIAT NN VVINF

Acc.Pl.Masc Acc.Pl.Masc 3.Sg.Pres.Ind 3.Nom.Sg.Neut Acc.Sg.Masc Acc.Sg.Masc Inf
“But without the Tigers there will be no peace”
Figure 1: TiGer treebank tree

grammatical function labels. The main differences betweertwo treebanks are:
(1) the flatter annotation in TiGer compared to the more hifsiaal annotation
in TuBa-D/Z, (2) the annotation of unary nodes in the TuB@-Bhd no unary
nodes in TiGer, (3) TuBa-D/Z uses topological fields to aatethe semi-free
German word order, which allows for three possible sentenoéigurations (verb-
first, verb-second and verb-final), and (4) TiGer annotat@sgLDistance Depen-
dencies through crossing branches, while TiiBa-D/Z enchB®&s with the help

of grammatical function labels (see Figures 1/and 2).

3 Automatic Annotation of LFG F-Structures

Cabhill et al. [2003, 2004, 2005, 2008] presented a moduletnitcture for auto-
matically annotating the English Penn-Il treebank with L+&ructures (Figure
3), which enables them to automatically extract deep, wimerage grammars
which yield results in the same range as the best hand-drgfeanmars for En-
glish [Briscoe and Carroll, 2002, Kaplan et al., 2004]. Ttstricture Annotation
Algorithm (AA) exploits lexical head information, and cgteial, configurational
and functional information as well as traces and co-inderaannotated in the
Penn-Il treebank. After determining the head of each cestt, the main module
of the AA usedeft-right context annotation principle® assign the most probable
f-structure equation to each node in the tree (Figure 3).s&mginciples express
annotation generalisations and have been hand-crafteabkinh at the most fre-
guent grammar rules for each node in the Penn-Il treebanlkaandlso applied to
unseen low-frequency rules. A sample partial left-rightteat annotation rule for
NPs is given in Table|1. The left-context rule states thaadjéctives or adjectival
phrases to the left of the head of an NP should be annotated adjanct, while
the right-context rule specifies that an NP to the right offiead of an NP is an



SIMPX

Namhafte Verstarkungen hingegen wird es fur die nachste Spielzeit  nicht geben
ADJA NN ADV VAFIN PPER APPR ART ADJA NN PTKNEG VVINF
apf apf 3sis nsn3 a asf asf asf
“However, there won’t be considerable reinforcements liernext playing
season.”

Figure 2: TuBa-D/Z treebank tree

Head Left-Right Context Coordination Catch-All
Lexicalisation Ar!no_tallon Ar!no_tatlon and Traces
Principles Principles Clean-Up

Figure 3: Architecture of the English f-structure AnnatatiAlgorithm (AA)

apposition. The creation of these left-right-context sukeeds linguistic expertise
and crucially depends on configurational properties of hgl

left-context head right-context
JJ, ADJP:] = € T ADJUNCT | NN,NNS,...| NP:| = € T APP
=

Table 1: Left-right context annotation rule used in the EStghAA

Coordinations are treated seperately. After adding festine equations to all
nodes in the tree, th€atch-All and Clean-Upnodule deals with overgeneralisa-
tions. Finally, traces are resolved.

The German LFG AA, like the English one, is highly moduladissend pro-
ceeds as follows (Figure 4). First it reads in the treebaekstrencoded in the
NEGRA export format and converts each tree into a tree abjEleen it applies
head-finding rules which we developed in the style of Magerfi@95], in order
to determine the head of each local ndd@he head-finding rules specify a set
of candidate heads, depending on the syntactic categoheaidde, and also the

1TiGer provides head annotation for all categorial nodegpslPs, PPs and PNs. Due to the
flat annotation in TiGer, partly resulting from the decisioot to annotate unary nodes, the problem
of identifying the correct head for those nodes is more sethean for the TuBa-D/Z, where the more
hierarchical structure results in smaller constituentgtyhin addition, are all head-marked. When
annotating original treebank trees, the head-finding ratesapplied to NP, PP and PN nodes; when
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Figure 4: Architecture of the German f-structure Annotatikigorithm

direction (left/right) in which the search should proceEdr prepositional phrases,
for example, we start from the left and look at all child nodéthe PP. If the left-
most child node of the PP has the label KOKOM (comparativéigl@y, we assign
it as the head of the PP. If not, we check if it is a preposit®BRFPR), a preposition
merged with a determiner (APPRART), an apposition (APP@J, so on. If the
left-most child node does not carry one of the candidateldalwee take a look at
the next child node, working our way from left to right.

For some of the nodes these head-finding rules work quite wieile for others
we have to accept a certain amount of noise. This is espetiad for the flat NPs
in the TiGer treebank. ASpecial Casemodule checks these nodes at a later stage
in the annotation process and corrects possible errors makde annotation.

After determining the heads, the tree is handed over tovtheros module
which assigns f-structure equations to each node. Thisng @adth the help of
macros. Sometimes these macros overgeneralise and assigroaect grammat-
ical function. In order to deal with this, thepecial Casemodule corrects inap-
propriate annotations made by thtacrosmodule. Finally thé/alidation module
takes a final look at the annotated trees and makes sure &gt evde has been
assigned a head and that there is no node with two child nategrg the same
governable grammatical function.

The most important difference in the design of the Englisth tie German
AAs concerns the application of left-right context anniotatrules described above.
For English, these rules successfully specify the corneadtation for the majority
of local nodes in a given tree. For German, however, thess dd not work as well
as for English. Table|2 illustrates this point by showindeati#nt possibilities for
the surface realisation of a (rather short) German senteémae of the examples
are highly marked, but all of them are possible surfacesatdins of (1).

(1) DieAnklage legtihmdeshalb Betrugzur Last.
the prosecutiorlies him thereforefraud to theburden.

The prosecution therefore charges him with fraud.

The f-structure-annotated grammar rule for the sentenég)i(Figure 5) tells
us that the first NADie Anklage(the prosecution) is the subject of the sentence,

running the AA on parser output trees with erroneous or nodbElk in the trees, we also make use
of head-finding rules for other syntactic categories.

In TiBa-D/Z, heads are marked for most categorial nodes. edery there are some open issues,
like the one concerning the head of the middle field or of prayeme nodes, or the annotation of
appositions, which are considered to be referentiallytidahand therefore bear no head marking in
the TuBa-D/Z.



S — NP VVFIN PPER PROAV NN PP
TSUBJe T1=] TDA=| |eTMO T1O0OA=| T10OPH

Figure 5: Grammar rule and f-structure equations for théesee in((1)

Die Anklage legt ihm  deshalb Betrug zur Last.
Betrug legt ihm  deshalb die Anklage  zur Last.
Ihm zurLast legt die Anklage deshalb Betrug.
Zur Last legt ihm die Anklage deshalb Betrug.
Deshalb legt ihm die Anklage Betrug zur Last.

Table 2: Variable word order in German (sentende (1))

while the nounBetrug (fraud) should be annotated as an accusative object, and
the pronominal adverbdeshalb(therefore) is an element of the modifier set. Ta-
ble[2, however, illustrates that these constituents caardocvery different posi-
tions to the left or right of the head of the sentence. Thisnshihat, unlike for a
strongly configurational language such as English, theifspetton of left-right-
context rules for German is not very helpful.

Instead of developing horizontal and strongly configuralaontext rules, the
AA for German makes extended use of macros, using differemtbmations of
information such as part-of-speech (POS) tags, node laddie labels and parent
node labels (as encoded in the TiGer and TiBa-D/Z treebartkis3t we apply
more general macros assigning functional annotationsdo B®S, syntactic cate-
gory or edge label in the tree. More specific macros, sucheasdimbination of a
POS tag with the syntactic node label of the parent node aiegeaal node with a
specific grammatical function label, can overwrite theseegal macros. The order
of these macros is crucial, dealing with more and more speanftormation. Some
of the macros overwrite information assigned before, wbileers only add more
information to the functional annotation.

To give an example, consider the POS tag ART (determinerg fifst macro
is triggered by this POS tag and assigns the f-structuretiequig=| , | dettype=
def. The next macro looks at combinations of POS tags and graicah&iinc-
tion (GF) labels and, for a determiner with the label NK (ndemnel), adds the
equation? spec: det=|, while the same POS tag gets assigned the functional
equation] €1 spec: numberwhen occurring with the edge label NMC (numerical
component). The annotation for the combination of POS aadhgratical function
label can be overwritten when a more specific macro appligs,ame which also
considers the parent node for a particular POS-GF-combmat

The determiner with edge label NK has so far been annotaticheadword |
dettype=def,T spec. det=|. This is overwritten with the f-structure equation
1T obj:spec: det=|, if it is the child of a PP node. This is due to the fact that
the annotation guidelines of the TiGer treebank analyspgsigons as the head
of a PP, while the head noun (and its dependents) inside tle &otated as the



object of the preposition. Due to the flat annotation in th&€dritreebank, it is not
helpful to use vertical context above the parent node lelieé AA makes heavy
use of theSpecial Casemodule, where further annotation rules are specified for
most syntactic categories. One tricky case is that of NPschwhave a totally
flat structure in the TiGer treebank. There are many casesavthe information
about POS tag and grammatical function label is not sufficemd neither is their
relative position to the head of the phrase. In those caseprisence or absence
of other nodes decides the grammatical function of the nodgiéstion.

NP

T

NN PN
le=1: name mod 1=]

Kanzlerin

chancellor NE NE

le=1: name mod =l

| |
Angela Merkel

Angela Merkel

Figure 6: NP-internal structure in TiGer (PN=head)

NP
ART NN PN
1 spec det=] 1=| Tapp=|
|
die Kanzlerin
the chancellor NE NE
le=1: name mod =l
| |
Angela Merkel
Angela Merkel

Figure 7: NP-internal structure in TiGer (PN=apposition)

To illustrate this, consider the three examples in Figur8s Bll three exam-
ples show an NP with a noun child node followed by a proper nghg node, but
where the grammatical annotations differ crucially. Ind¥ig6, the PN is the head
of the NP. In Figuré 7, where we have a determiner to the ldfi@houn (NN), the
noun itself is the head of the NP, while the PN is an apposifidre third example
(Figure 8) looks pretty much like the second one, with theepkion thatMerkelis
in the genitive case. Here the PN should be annotated as tivgeaitribute. This
is not so much a problem for the annotation of the originatlienk trees where
we have both the correct grammatical function labels as aslnorphological
information. For parser output, however, morphologic&bimation is not avail-
able and the grammatical functions assigned are oftennectorin Section 4.2/1



NP

ART NN PN
1 spec det=] 1=l Tar=|
| |
die Regierung
the government NE NE
le=1:name mod 1=l
| |

Angela Merkels
Angela Merkel gen

Figure 8: NP-internal structure in TiGer (PN=genitive te tiight)

we will return to this issue und discuss the reason for thesimismorphological
information in the parser output.

3.1 Differences between our AA for German and Preliminary Wak

The annotation algorithm for German presented in this @ragtbased on and
substantially revises and extends preliminary work by {Cahial. [2003, 2005]
and Cabhill [2004]. The AA by Cahill et al. provides annotatidfor a rather lim-
ited set of grammatical functions only (26 grammatical tiors: 11 governable
functions, 10 non-governable functions and 5 atomic fesjur\We created a new
gold standard f-structure bank containing 250 sentences fne TiGer treebank,
the TIGER250, which uses a substantially extended set ofigiatical functions
and features (46 grammatical functions: 14 governable gratical functions, 13
non-governable grammatical functions and 19 atomic feajur As a result, the
annotated resources contain richer linguistic infornmatiad are of higher quality
and usefulness compared to the one of Cabhill et al. [200F]208d Cahill [2004].
Our annotation algorithm also makes use of a valency diatypim order to distin-
guish between stative passive constructions and the Gelrmdakt withsein'to
be’.

We also adapted the AA to the feature set used in the TiGer[B&st et al.,
2004] (Dependency Bank) and a hand-crafted gold standand fine TiiBa-D/2
(TUBA100).

2The TiGer DB distinguishes 52 different grammatical feasurWe use a slightly modified ver-
sion without the distinction between different prepositibobjects, and without morphological fea-
tures or compound analysis.

3The TiiBa-D/Z gold standard was semi-automatically crebyeideike Zinsmeister and Yannick
Versley, using the conversion method of Versley [2005] of f@ndomly selected trees from the
TuBa-D/Z. The feature set is similar to the TiGer DB.



4 LFG F-Structure Annotation and Evaluation on Two
German Treebanks

For German, we adapted the AA to the node and edge labels oivth&erman
treebanks. As described above, word order variation in @erdoes not allow
to make strong use of configurational information as in thglish AA. Instead,
we heavily rely on the grammatical function labels in theese This works well
when annotating original treebank trees, but causes majgms when applied
to parser output. State-of-the-art parsing results asepted in the PaGe Shared
Task on Parsing German [Kubler, 2008] are in the range of(®8-F-score for
TiGer and 75-84% for TiiBa-D/Z The differences in annotation schemes do not
allow for a direct comparison of parsing results, but thesags is clear: for both
treebanks automatically assigned syntactic nodes and,regee important, gram-
matical function labels are to a great extent error-proneiclvdefines an upper
bound for treebank-based parsing into f-structures usiagatitomatic annotation
algorithm.

Section 4.2 presents parsing experiments with automat® f-Btructure an-
notation based on TiGer and TuBa-D/Z, and evaluates thergieaef-structures
against hand-crafted gold standards from the TiGer trde@@aGer DB, TIGER250)
and from the TuBa-D/Z (TUBA100). However, before applyihg tAA to parser
output we want to test its performance on gold standard syreaes.

4.1 Results for LFG F-Structure Annotation on Gold Standard Syn-
tax Trees

Tablel 3 shows results for automatic f-structure annotatiorgold treebank trees
for the sentences in the TiGer DB, the TIGER250 and the TUBX¥1Results for

Prec. Rec. F-Score
TiGerDB 87.8 84.8 86.3
TIGER250 96.8 97.5 97.1
TUBA100 95.5 94.6 95.0

Table 3: Results for automatic f-structure annotation dd geebank trees

the TIGER250 and the TUBA100 are quite good, while resultgtie TiGer DB
are around 10% lower. This is due to mapping problems betweeiiGer DB
and TiGer treebank. The sentences in the TiGer DB have bemrerted semi-
automatically into a dependency-based triple format, qusiiarge, hand-crafted
LFG grammar for German [Dipper, 2003] and then manuallyestied. The TiGer
DB provides a very fine-grained description of linguisticepbmena in German,

4Results report constituent-basedal b labelled F-scores on syntactic nodes and grammatical
function labels when using gold POS tags with gold GF labglgsaaser input

SWe split the gold standards into development and test sét, 300 test set trees for the TiGer
DB and 125 test trees for the TIGER250. Due to its limited ,size did not split the TUBA100.



but includes additional information which is not annotatedhe TiGer treebank
and thus cannot be derived automatically. This means teaTiGer DB-based
evaluation is biased in favour of the hand-crafted LFG gramaf Dipper [2003].

4.2 Parsing German with Automatically Acquired LFG Grammar s

In our experiments we use the Berkeley parser [Petrov and kd608], a language-
agnostic parser which automatically refines and re-ane®tiie training data by
applying split-and-merge operations, so that the likelthof the transformed tree-
bank is maximised. The Berkeley parser achieved the besitsen the Shared
Task on Parsing German (ACL 2008).

We removed the gold standard sentences from the treebadlexaracted two
training sets with 25,000 sentences each. For TiGer we gertsup different ways
of resolving crossing branches in the trees: (1) by attackire non-head child
nodes higher up in the tree, following Kibler [2005], and l§2)splitting discon-
tinuous nodes into smaller “partial nodes” [Boyd, 2007],tiategy which aims
at preserving local tree structure while allowing the syste recover the origi-
nal dependencies after parsing. With regard to GF labelsested two different
settings: in the first setting (Atomic) we merged categar@de labels with gram-
matical function labels and trained the parser on the nemiattabels. In the
second setting (FunTag) we removed GF labels from the trgidata and trained
the parser on syntactic categories only. The GF labels weredssigned in a post-
processing step, using the SVM-based grammatical funtioelling software by
Chrupata et al. [2007]. We parsed the different test setls thi¢ extracted gram-
mars and, for the grammars without grammatical functicgtsi-unTag assign GFs
to the parser output. The trees with grammatical functibellawere passed over
to the AA, where all nodes in the parse trees were annotatddL\wiG functional
equations. Next we collected the equations and handed themma constrainst
solver, which generated LFG f-structures.

4.2.1 Results

Tablel 4 shows constituent-based parsing results for therelift test sets and set-
tings (Atomic, FunTag) as well as results for f-structuralestion. For the first set-
ting, where we let the Berkeley parser assign the gramnidtinations (Atomic),
the two TiGer test sets yield constituent-based parsingtees the range of 76-
79% (labelled F-score on syntactic categories) and 67-i0etufling GF labels).
Results for the TiBa-D/Z are more than 10% higher, which isudifact of the
different treebank annotation schemes and does not rellestpoutput quality, as
can be seen in the f-structure evaluation. On the f-stradewel precision is in the
range of 73-81%, while recall for the TiBa-D/Z f-structureslramatically lower
at around 45%. For the TiGer, we achieve a recall of 73.7% iGeT DB and of
79.7% for the TIGER250 test set.

Parsing results for the Berkeley parser trained on TiGetagfic nodes only



Constituent-based evaluation

Atomic FunTag
length<=40 | F-score | F-scoreGF | POS acc.|| F-score | F-scoreGF | POS acc.
TiGerDB 79.3 70.2 96.0 81.0 70.9 97.0
TIGER250 76.6 66.9 95.4 79.3 68.4 96.5
TUBA100 89.3 80.2 96.5 89.2 76.3 96.4

f-structure evaluation

Atomic FunTag

Precision Recall F-score || Precision Recall F-score
TiBerDB 73.0 73.9 73.4 76.1 65.1 70.2
TIGER250 81.4 79.7 80.5 87.6 67.5 76.3
TUBA100 76.9 45.1 56.9 75.8 39.3 51.7

Table 4: C-structure parsing results (labelled F-scoréaut and with GF) and
f-structure evaluation

(FunTag) are higher than for the atomic labels. For TiiBa;Dévever, we ob-
serve better results when training on both syntactic caieg@nd grammatical
functions. The FunTag-assigned GFs yield betteal b results and a higher pre-
cision for the TiGer f-structures. For the TiBa-D/Z, premisis slightly lower
than for f-structures generated from parser output whexeBttrkeley parser did
the function labelling. The better precision for the TiGetifuctures comes at the
cost of a decrease in recall. For the TiBa-D/Z f-structuresall is even lower
than before.

There are several reasons for the low recall for the TuBa-[ZDue to its
limited size the TUBA100 does not cover all relevant gramoagaphenomena and
therefore is not sufficient as a test set for grammar devetopmvhich is reflected
in the low recall score. (2) Phrases without a clear depesydesiation to the other
constituents in the tree are attached directly to the rodemo the TuBa-D/Z. The
resulting tree structure makes itimpossible for the AA sadibiguate the sentence
and find a suitable dependency relation for the highly atdatode, which means
that these nodes are not represented in the f-structutdefuowering recall for
the TiBa-D/Z. (3) NP internal structure in the TiBa-D/Z @ins less information
than in TiGer, where grammatical function labels distisugenitive attributes,
dative attributes and comparative complements. The ngigafiormation can be
partly retrieved from morphological annotation, but thisulM require an exten-
sive treebank transformation to make this information lalse to the parser. The
grammars extracted from the treebanks do not include méglwal information,
which means that the TiGer grammars encodes more specifitidoal informa-
tion than the TuBa-D/Z grammars.

Yet another reason for the lower recall for TiiBa-D/Z f-stawes can be found
in the design of the grammatical function labels used in tmeotation. While
the original treebanks use roughly the same number of graicethéunctions (44
in TiGer versus 40 in TuBa-D/Z; Table 5), some of the gramaadtfunctions
in the TuBa-D/Z occur only with a very low frequency. When qmaring two
smaller subsets of 2,000 gold treebank trees, we still finafithe 44 GFs in



Goldall Gold 2000 Atomic FunTag
TiGer 44 42 41 40
TuBa-D/Z 40 33 31 19

Table 5: Number of different grammatical functions in Ti@&rBa-D/Z gold trees
and reproduced in the different parsing settings (Atomio/lag)

the TiGer set, while the TluBa-D/Z subset uses only 33 of th&EB8. For parser
output the problem gets even worse. In the TiGer-trainesigrautput for the same
subset of 2,000 sentences we find 41 different GF labels wieeBé¢rkeley parser
assigns the grammatical functions, and 40 when FunTag ¢@e&F labelling,
while in a data set of the same size from the TiiBa-D/Z, onlyiBérént GF labels
are used in the parser output (Atomic), and the FunTag apbrgelds only 19
different grammatical functions. This leads to a crucidfedence between the
type of information encoded in the GF labels for the two tesdds: while TiGer
labels describe the grammatical function of one node, inaFD#Z the GF labels
(besides the main grammatical functions such as subjectamshtive or dative
object) express dependency relations between differetiésian the tree, which
are often positioned in different topological fields. Asmied out, some of the
grammatical functions in the TiiBa-D/Z occur with a very lowduency This
poses a problem for machine learning methods, which rely suffeciently large
set of training instances in order to achieve good perfoo@am unseen data.

GF | Atomic | FunTag || Atomic [ FunTag
TiGer (2,000 sent.)| TuBa-D/Z (2,000 sent.)

DA 52.5 74.9 56.8 27.2

OA 79.5 85.5 69.0 46.4

SB 90.0 88.4 85.2 72.1

ALL GF 93.1 94.4 91.9 88.3

Table 6: Evaluation of main grammatical functions in TiGed&d iBa-D/Z (dative
object: DA/OD, accusative object: OA, subject: SB/ON)

Next we compare results for the main grammatical functicbject, ac-
cusative and dative object) on 2,000 sentence test setsTi@er and TiBa-D/Z
(Table[ 6). For parser-assigned GFs, we observe bettettgdsuldative objects
(DA/OD) for the parsing model trained on the TuBa-D/Z, wHibe subjects and
accusative objects the TiGer-trained parser yields bettrlts. The SVM-based
FunTag shows poor performance on the TiiBa-D/Z data, whil&iféer the func-
tion labeller outperformes the setting where the Berkelawser does the GF as-
signment (Atomic). This divergent behaviour might be du¢hi different data

80A-MODK (conjunct of modifier of accusative object), ON-M®D(conjunct of modifier of
nominative object) and OADVPK (conjunct of modifier of ADVBject) occur only once in 27,125
sentences in TuBa-D/Z Release 3, OG-MOD (modifier of gemitbject) 7 times, OADJP-MO
(modifier of ADJP object) 8 times, OADVP-MO (modifier of ADVRject) 10 times, and FOPPK
(facultative object of PP object) 17 times.



structures in the treebanks. The split into topologicatiieh the TuBa-D/Z takes
away necessary context information, which is encoded ifigiiire set for the flat
TiGer trees.

4.3 Different Approaches to Discontinuity and their Impact on F-
Structure Annotation

Boyd [2007] presents an improved method for converting ttossing branches
in TiGer into context-free representations by splittingdigcontinuous nodes into
marked “partial” nodes. She shows that the improved corenesults in more
consistent trees and improves results in a labelled depepd®saluation for ac-
cusative, dative and prepositional objects. In her expamis) Boyd used an unlex-
icalised PCFG parsing model (LoPar, Schmid [2000]) witldd®DS tags as parser
input.

We applied the split-node conversion method to the TiGex dat trained the
Berkeley parser on the converted training sets. Table 7 sipansing results for
the two conversion methods: (1) raised nodes and (2) spliesioFor the TiGer
DB test set, results for the split-node conversion are 8glighiorse, while for the
TIGER250 test set there is a small improvement of 1% F-sdaveboth data sets,
however, the number of valid f-structures decreases ceraditi.

Precision Recall F-score valid F-struc.

TiGer DB
raised 73.0 73.9 73.4 82.4
split 71.8 72.0 71.9 71.0
TIGER250
raised 81.5 80.9 81.2 88.0
split 82.7 81.8 82.2 84.0

Table 7: f-structure evaluation on converted TiGer treaiséd- vs. split-node)

Boyd’s split-node conversion works well for pure PCFG pesdike LoPar.
The Berkeley parser, however, makes use of horizontal naesdiion, which breaks
up the original grammar rules and generates new rules wtaech hot been seen
in the training set. This also admits rules with only one @& tvo partial nodes,
which means that a reconstruction of the original tree isossjble, and often leads
to clashes during f-structure generation.

5 LFG Parsing: Related Work

This section discusses related work and shows how our iseampares to the
wide-coverage hand-crafted LFG grammar of Dipper [2003}hier and Forst
[2006], and Forst [2007] developed in the ParGram projecttt[®t al., 2002].
The ParGram German LFG uses 274 LFG-style rules (with regxdpression-
based right-hand sides) and several lexicons with detailbdategorisation infor-
mation and a guessing mechanism for default lexical enfRetirer and Forst,



ParGram TiGerDB DCU250
up. log. low.
GF bound | lin. | bound
da 67 63 55 44 38
ar 88 84 79 71 87
mo 70 63 62 65 73
oa 78 75 65 69 63
guant 70 68 67 67 78
rc 74 62 59 34 30
sh 76 73 68 74 79
preds
only 79.4 | 75.7| 72.6 72.7 78.6
coverage on the NEGRA treebank?0,000 sentences)
815 [ 815] 815 || 882 | 88.7

Table 8: F-scores for selected grammatical functions ferfarGram LFG (upper
bounds, log-linear disambiguation model, lower bounds)fantwo automatically
acquired TiGer grammars

2006]. Preprocessing in the experiments reported in RamerForst [2006] in-
cludes modules for tokenisation, morphological analysid manual marking of
named entities, before the actual parsing takes place. Ani@ubl disambigua-
tion component based on maximum entropy models is usedrimmkimg the output
of the parser. Forst [2007] tested parser quality on 1,468#%sees from the TiGer
DB and reported a lower bound, where a parse tree is chosdormray from the
parse forest, an upper bound, using the parse tree with gies$ti F-score (eval-
uated against the gold standard), as well as results foe g@iection done by the
log-linear disambiguation model.

Table 8 shows results for the ParGram LFG and for the auteaitinduced
grammars on selected grammatical relations and on all gedioah functions ex-
cluding morphological and other features (preds only). dli@matically induced
TiGer DB and DCU250-style grammars were trained on the fileT treebank
(>48,000 sentences, excluding the test data). We reporttsefaunlthe test sets
from the TiGer DB and the DCU250.

The hand-crafted LFG outperforms the automatically aegugrammars on
most GFs for the TiGer DB, but results are not directly corapb. The TiGer
DB-based evaluation is biased in favour of the hand-crdffé@. Named entities
in the ParGram LFG input are marked up manually, while forgrammars these
multiword units often are not recognised correctly and sganished during eval-
uation, even if part of the unit is annotated correctly. Rentnore, the hand-crafted
ParGram LFG grammar was used in the creation of the TiGer D@gjandard in
the first place, ensuring compatibility as regards tokeinisaand overall linguistic
analysis.

F-scores for the DCU250 are in roughly the same range as tbe fon the
hand-crafted grammar. For high-frequency dependenéiesilibjects (sb) or mod-
ifiers (mo), results of the two grammars are comparable. dvwaiftequency depen-



ParGram TiGerDB | DCU250

up. log. low.
GF bound | lin. | bound
da 67 63 55 58 50
ar 88 84 79 68 88
mo 70 63 62 63 77
oa 78 75 65 68 80
guant 70 68 67 58 69
rc 74 62 59 50 50
sb 76 73 68 76 85
preds
only 79.4 | 75.7| 72.6 76.0 84.4

Table 9: Precision for selected grammatical functions lier ParGram LFG and
for the TiGer grammars

dencies like dative objects (da) or relative clauses (roydver, the hand-crafted
LFG outperforms the automatic LFG f-structure annotatilgo@hm by far. Cov-
erage for the automatically acquired grammars is conditierdagher than for the
hand-crafted LFG grammar. Rohrer and Forst [2006] repodvarage of 81.5%
(full parses) when parsing the NEGRA treebank, which costaewspaper text
from the same newspaper as in the TiGer treebank. By conth@sautomatically
acquired TiGer grammars achieve close to 90% coverage osatine data. On
the TiGer treebank Rohrer and Forst [2006] report coverd@® d% full parses,
raising the possibility that, as an effect of enhancing greamcoverage by system-
atically extracting development subsets from TiGer, thesPam LFG is tailored
closely to the TiGer treebank.

The DCU250 test set is equally biased towards the TiGer amdebased LFG
resources, as it only represents what is encoded (direcitggicitly) in the TiGer
treebank. The truth is somewhere in between: The TiGer DRuatian of the
treebank-based LFG resources attempts to a limited exdesdunter the bias of
the original TiGer DB resource towards the hand-crafted IgF&@nmar by remov-
ing distinctions which cannot be learned from TiGer datayoahd by relating
TiGer DB to (some of) the original TiGer tokenisation usihg tversion prepared
by/Boyd et al. [2007]. The resulting resource still favoure hand-crafted LFG
resources, which outperform the treebank-based resolycaisout 3% points ab-
solute. Looking at precision, results for the TiGer gransrae more or less in the
same range as the F-scores for the Pargram LFG (TaBle 9).

5.1 Discussion

Our automatically extracted grammars yield better covethgn the hand-crafted
LFG of Dipper [2003], Rohrer and Forst [2006] and Forst [Z0®ut with regard
to F-score the ParGram LFG still outperforms the automiiGeequired gram-

"Unfortunately, Forst [2007] does not report results forcigien and recall.



mars. The lower results for our grammars are not due to lowigion: Table
9 contrasts F-scores for the Pargram LFG with results focigian as achieved
by the automatically acquired TiGer grammars. Future wbduil therefore fo-
cus on improving recall in order to achieve results comgaralith or better than
hand-crafted grammars. One promising approach is the o8eea¥er [2009], who
describes a grammatical function labeller based on Integesar Programming
(ILP). Seeker presents a two-step approach, consistinglafssification step and
a selection step. During classification, the probabilistribbution over all possible
labels for each node in the tree is computed, using a maximirogy classifier.
During selection, the overall probability of the whole tiseptimised, where the
ILP-based approach allows the developer to implement hamdtints (e.g.: no
more than one subject per local tree). First results shotgtbhal optimisation in
combination with linguistically motivated constraintspnoves precision and cov-
erage. F-scores for f-structure evaluation on the TiGer Di8ease to more than
75%, while coverage was raised from around 88% to more thém 96

An unsolved problem is the encoding of LDDs in treebank satimt schemes
for (semi-) free word order languages. Currently, neitter TiGer treebank and
even less so the TuBa-D/Z way of representing non-local rdgecies can be
learned successfully by statistical parsers. An approackdolving LDDs at the
f-structure level was described in Cahill et al. [2004] arehilt [2004] and suc-
cessfully implemented as part of the English treebankédases acquisition and
parsing architectures. However, the method of Cahill etelies on complete f-
structures, which means that the recall problem must hase belved before we
can reliably and profitably compute LDDs on f-structure ldee German.

6 Conclusions

We presented two architectures for the automatic acquisifoLFG resources,
based on two German treebanks. Compared to a hand-craftetaG&FG, our
method yields higher coverage and comparable resultsddrigh-frequency gram-
matical functions, while for the less frequent GFs the haradted grammar clearly
outperforms the automatic approach.

We have outlined a number of problems for treebank-bas#&aidtare anno-
tation for German: (1) The semi-free word order in Germaeguwut the use of
configurational information for f-structure annotatio) Parsing results for Ger-
man, especially for GF assignment, are not reliable enoagdupport accurate
f-structure annotation. (3) Our alternative approach wgasGF labels using an
SVM-based function labeller achieves high precision, bth@cost of recall. This
is due to missing context sensitivity of the function labglkesulting in the assign-
ment of conflicting GFs.

We showed that particular treebank encoding schemes haxeng gmpact on
the usability of the resources. We argue that the GF labehstie TuBa-D/Z,
which has been designed with the aim of expressing depewndelations between



different nodes in the tree, is less adequate for the autoraefjuisition of LFG
resources than the label set in TiGer. The GF labels in theaID&Z are harder to
learn and also encode less specific grammatical informétamthe ones in TiGer.

The task of automatically inducing linguistic resourcesrir(semi-) free word
order languages is much harder than for more configuratianguages like En-
glish. Future research needs to address the problem of atito®F assignment
which for German is far more important than for configuragiblanguages (one
promising line of research has been outlined in Section ®hjy then can we ex-
pect to automatically induce high-quality linguistic rasces for languages other
than English and other configurational languages.
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