
There’s no Data like More Data? Revisiting the Impact of Data Size on a
Classification Task

Ines Rehbein, Josef Ruppenhofer

Saarland University
Saarbrücken, Germany

{rehbein,josefr}@coli.uni-sb.de

Abstract
In the paper we investigate the impact of data size on a Word Sense Disambiguation task (WSD). We question the assumption that the
knowledge acquisition bottleneck, which is known as one of the major challenges for WSD, can be solved by simply obtaining more
and more training data. Our case study on 1,000 manually annotated instances of the German verb drohen (threaten) shows that the
best performance is not obtained when training on the full data set, but by carefully selecting new training instances with regard to their
informativeness for the learning process (Active Learning). We present a thorough evaluation of the impact of different sampling methods
on the data sets and propose an improved method for uncertainty sampling which dynamically adapts the selection of new instances to
the learning progress of the classifier, resulting in more robust results during the initial stages of learning. A qualitative error analysis
identifies problems for automatic WSD and discusses the reasons for the great gap in performance between human annotators and our
automatic WSD system.

1. Introduction
Nowadays, supervised ML-based approaches are the main-
stay of many NLP applications, relying on a reasonably
sized amount of manually annotated training data. The cre-
ation of high quality language resources, however, is time-
consuming and costly. Recently, two different approaches
have been used successfully to minimise the problem. The
first applies semi-supervised techniques to bootstrap more
training data from unannotated text (Yarowsky, 1995). The
second, referred to as Active Learning (AL) (Cohn et al.,
1996), tries to minimise human annotation effort by care-
fully selecting the most informative training instances, thus
reducing the size of the training data while preserving ac-
curacy.
Bootstrapping assumes that adding enough (even noisy)
training data can solve most of the classification problems
in NLP. By contrast, AL assumes that more training data
does not always improve results, and that a smaller number
of high-quality training instances reduces the time and cost
of annotation. In the paper we address whether NLP clas-
sification systems can be improved by simply enlarging the
amount of training data, or if there is an upper bound that
we cannot exceed with sheer size. We chose Word Sense
Disambiguation as a typical classification task in NLP, and
present experiments in an AL setting.
The contribution of the paper is two-fold: we present MaJo,
a new toolkit for WSD using AL which combines an easy-
to-use graphical user interface with support for feature ex-
ploration.1 We propose an improved method for uncer-
tainty sampling, taking into account what the classifier has
learned so far, increasing the performance of AL in the
early training stages. On a theoretical level, we contribute
to the ongoing discussion on the impact of training size
on classification tasks, arguing that quality is better than
quantity, and that further improvements in WSD cannot be

1MaJo is freely available for research purposes (http://
www.coli.uni-saarland.de/projects/salsa).

gained by using ever more training data. We show that a
large amount of training data for a verb whose senses are
very easy to distinguish for humans still does not allow the
classifier to discriminate between the word senses, and dis-
cuss the main reasons for the gap in performance between
our WSD system and human annotators.
The paper is structured as follows. Section 2. gives a brief
overview of the Active Learning paradigm and discusses
related work investigating the impact of training size on a
classification task. Section 3. describes the AL process with
MaJo. In Section 4. we present experiments on WSD, using
a simulated AL approach, and describe our improved sam-
pling method based on uncertainty sampling. In Section 5.
we discuss our results and their impact on the question of
the appropriate size of training data. The last section con-
cludes and outlines future work.

2. Active Learning
The basic idea in AL is to reduce the amount of human
annotation by selecting new training instances according
to their informativeness for the machine learning classifier.
Selected instances are passed to a human annotator, the or-
acle, who assigns the correct label. Instead of annotating a
large number of instances, Active Learning seeks to select
those instances from a large pool of sentences which pro-
vide important information for the machine learner. Thus
guiding the learning process by providing the information
the classifier still needs to learn, a smaller number of in-
stances should suffice to achieve the same accuracy as on a
larger training set of randomly selected training examples.

2.1. Related Work
Although AL has been shown to be useful for WSD in gen-
eral (e.g. Chen et al. (2006)), some open issues remain.
Recent work has explored the impact of different parame-
ters on the performance of AL. Among them are the size of
the seed data; techniques for selecting new examples to be
labeled by the human oracle; possible stopping criteria for



when to end the AL process (e.g. Vlachos (2008), Blood-
good and Shanker (2009)). Other key issues include the
grain size of sense distinctions and the distribution of word
senses in the data. It is not yet clear whether AL works only
for coarse-grained sense distinctions (Dang, 2004) or also
for fine-grained ones (Chan and Ng, 2007).

3. MaJo - A Graphical User Interface for
WSD using Active Learning

The MaJo toolkit for supervised Word Sense Disambigua-
tion (WSD) provides a testing environment for exploring
the questions outlined in Section 2.1. Its graphical user in-
terface allows users with little or no programming skills to
investigate the interaction between different feature sets and
settings for sampling and to systematically explore the im-
pact of the different parameters on the Active Learning task.
MaJo features a flexible plugin architecture which imple-
ments a number of interfaces to off-the-shelf NLP tools
and linguistic resources for extracting training data from
the web (Yahoo! search API), for preprocessing (Stan-
ford POS Tagger (Toutanova et al., 2003), Stanford Parser
(Klein and Manning, 2003), Berkeley Parser (Petrov and
Klein, 2007), MaltParser (Nivre et al., 2006)), for extract-
ing semantic features (WordNet (Fellbaum, 1998), Ger-
maNet (Kunze and Lemnitzer, 2002)) and for classification
(OpenNLP MaxEnt 2.52). The architecture can easily be
extended to incorporate additional components for prepro-
cessing and feature extraction, or to implement new ma-
chine learning algorithms for training. At the moment the
system provides working interfaces for English and Ger-
man, but it can easily be extended to other languages.
The graphical user interface guides the user through the
learning process and enables the user to systematically ex-
plore the benefit gained from different feature types for
WSD. The toolkit supports manual annotation of selected
instances and re-trains the system on the extended data set.
MaJo also provides the means to evaluate the performance
of the system against a gold standard.
The approach to AL with MaJo is as follows (Figure 1):
First the system is trained on a small seed data set con-
taining sentences with disambiguated instances of a specific
target word. In the AL phase, users can either load unan-
notated sentences from a text file, enter new instances by
hand, or generate new example sentences from the WWW.
Users can specify a threshold for uncertainty sampling
(Lewis and Gale, 1994): all sentences for which the confi-
dence of the prediction by the classifier is below the thresh-
old are presented to the user for annotation. The idea be-
hind this sampling method is that the classifier’s low con-
fidence shows that it has yet to learn how to treat these ex-
amples, and by adding them to the training set we allow
the classifier to just do that. After having been assigned the
correct word sense, the new instances are added to the seed
data and a new model is trained on the combined data set.
The process can be repeated, adding more and more new in-
stances to the training set. For a more detailed description
of the MaJo toolkit see Rehbein et al. (2009).

2http://maxent.sourceforge.net

4. Experiments
4.1. Data
We selected 1,000 newspaper sentences containing the Ger-
man verb drohen (threaten). The data was annotated man-
ually by two expert annotators, following the annotation
scheme of the German Salsa Corpus (Burchardt et al.,
2006), a newspaper corpus annotated within the framework
of frame semantics (Baker et al., 1998) . We selected dro-
hen because it has only 3 different word senses which can
be easily distinguished by human annotators (Table 2). The
three word senses, or frames, are RUN RISK-SALSA, COM-
MITMENT and the proto-frame DROHEN1-SALSA.3 While
there is a dominant frame which accounts for the ma-
jority of occurences of drohen (threaten) in our data set
(RUN RISK-SALSA captures around 50% of all word senses
of drohen in our data), the distribution is not unduly skewed
and still provides us with a large number of examples for
the other two word senses of drohen.

frame freq. example
drohen1-salsa 243 Die Mieten drohen zu steigen.

Rent increases are imminent.
Commitment 256 Sie drohte ihm mit dem Messser.

She threatened him with the knife.
Run risk 501 Ihr drohen 3 Jahre Gefängnis.

She is facing 3 years in prison.
1,000 training: 750, test: 250

Table 2: Word senses (frames) for drohen (threaten)

The three word senses (or frames) are defined as follows.

1. The RUN RISK frame describes a situation where a
Protagonist is exposed to a potentially dangerous sit-
uation that may end in a Bad outcome for him- or her-
self. Please note that the original FrameNet RUN RISK
frame does not include the verb threaten. RUN RISK-
SALSA (hence called RUN RISK) is an enhanced ver-
sion of the FrameNet RUN RISK frame with the three
core frame elements Action, Bad outcome and Endan-
gered entity. In German, Endangered entity is usually
filled by a dative NP.

(1) IhrEndangered entity

Her
drohen
threathen

3 Jahre GefängnisBad outcome

3 years prison.
”She is facing 3 years in prison.”

2. The COMMITMENT frame is defined as follows: “A
Speaker makes a commitment to an Addressee to carry
out some future action.” The two core frame elements,
addressee and speaker, are constrained to the seman-
tic type sentient. The announced action includes de-
sirable as well as less desirable events. Often these
sentences include a mit-PP (with-PP) expressing the
message or an instrument.

3Proto-frames are created to capture those meanings in Ger-
man which are not yet covered by existing FrameNet frames.
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Figure 1: Active Learning loop with MaJo

Feature Class Description Parameter
(1) WordRangeContext bag-of-word context window size
(2) POSTagContext bag-of-POS-tag context window size Berk./Stan.

POS Tagger
(3) ClauseFunDep words or POS tags for given functional MaltParser

functional dependencies dependency
(4) SentencePhrase words or POS tags for children syntactic Berk./Stan.

FunDep of a specific syntactic category category Parser
(5) WordNet/GermaNet WordNet relations for max. depth, Berk./Stan.

(Super)POSTag (super-ordinate) POS tags sem. relation POS Tagger
(6) WordNet/GermaNet WordNet relations for specific max. depth, MaltParser

FunDep functional dependencies sem. relation

Table 1: Off-the-shelf software components implemented in MaJo

(2) SieSpeaker

She
droht
threatens

ihmAddressee

him
(PP
(PP

mit
with

dem
the

Messer)
knife).
”She threatens him with the knife”

(3) SieSpeaker

She
droht
threatens

ihmAddressee

him
(PP
(PP

mit
with

Vergeltung).
revenge).
”She threatens to take revenge on him”

3. The third frame, DROHEN1-SALSA, shows strong se-
mantic similarity to RUN RISK-SALSA while being
syntactically distinct. Is is realised by an infinite verb
form with zu (to) and comprises the two core frame
elements Bad outcome and Cause.

(4) Die KriseCause

The crisis
droht
threatens

Arbeitsplätze zu vernichtenBad outcome

jobs to eliminate.
”The crisis threatens to eliminate jobs.”

Human annotators do not have problems to distinguish
these frames. We computed Inter-Annotator Agreement on
100 sentences annotated by both annotators. The two an-
notators agreed on 99% of the data. This means that our

data set does not include annotation noise resulting from
controversial cases which could mislead the classifier.
In the experiment we want to investigate the following
questions: (1) How many training instances do we need to
get a reasonable performance for an automatic WSD sys-
tem? (2) For an easy verb like drohen, can we get results
comparable to human judgments when having access to a
large amount of training data?

4.2. Feature Tuning
We used MaJo for tuning the features for the verb drohen
and afterwards extracted the features from the training set
(750 sentences). We kept the remaining 250 sentences for
evaluation, running our experiments in a 5-fold cross vali-
dation setting. Our tuned feature set includes the following
feature classes and settings:

1. bag-of-word context (5 words to the left/right)

2. bag-of-POS-tag context (3 POS tags to the left/right)

3. word forms for token assigned one of the follow-
ing functional dependencies: main predicate (ROOT),
subject (SUBJ), accusative object (OBJA), dative ob-
ject (OBJD), genitive object (OBJG), prepositional
object (OBJP), prepositional modification (PP), dis-
continuous morphemes (PART), prenominal attribute
(ATTR), auxiliary phrases (AUX) and split verb pre-
fixes (AVZ)



4. POS tags for all children of VZ phrases (VPs with zu-
marked infinitives).

To our surprise we found that the features based on Ger-
maNet did not perform well (Table 3). Best performance
was obtained by lexical context features (bag-of-word con-
text (0.705) and word forms for token with selected gram-
matical functions (0.700)). Somewhat lower were results
for POS context (0.635), while features based on GermaNet
hypernyms extracted for all nouns, adjectives and verbs
only achieved an accuracy of 0.575, and the feature set
based on GermaNet hypernyms for arguments did not per-
form well at all (0.475).

There are two possible explanations. First, the grammatical
functions used for identifying the candidates for the Ger-
maNetMalt feature plugin have been assigned by the statis-
tical parser and thus are error-prone. Results for the Malt
parser in the PaGe shared task on parsing German (Kübler,
2008) report an f-score of 90.2% for subjects and 80.0% for
accusative objects, while for dative objects the MaltParser
achieves 49.7% f-score only. This explains the better per-
formance for the GermaNet features based on superordinate
POS tags (Table 3). A second reason for the poor perfor-
mance of the semantic GermaNet based features is founded
in the more syntactically motivated frame distinctions. The
DROHEN1-SALSA frame can be identified by looking for
an infinite verb with zu (to), while RUN RISK-SALSA usu-
ally has an indirect object. As we mentioned above, the
automatic identification of dative NPs in German does not
work very well. However, the protagonist in the COMMIT-
MENT frame is often realised by a personal pronoun. While
case syncretism certainly is a problem for German, at least
the masculine personal pronoun ihm (him) is unambiguous.
Unfortunately, personal pronouns are not useful for extract-
ing informative features from GermaNet.

feature plugin settings accuracy
WordRangeContext 5 words left/right 0.705
ClauseFunDep ROOT, SUBJ, OBJA,

OBJP, PART, ATTR,
AUX, AVZ 0.700

POSTagContext 3 words left/right,
ignore punctuation 0.635

GermaNetSuperPOS Noun, Adj., Verb,
hyperonymy, depth=4 0.575

GermaNetMalt SUBJ, OBJA,
OBJD, OBJG
hyperonymy, depth=3 0.475

Table 3: Accuracy for individual feature types (all results
on fold 5)

Note that our tuned feature set outperforms the performance
of Shalmaneser, a state-of-the-art WSD system (Erk and
Padó, 2006) trained on the same data set.

We divided the 1,000 instances into a training set (750 in-
stances) and a test set (250 instances). The initial seed data
set contained 9 sentences (3 instances for each word sense)
taken from the SALSA corpus.

4.3. Results
As a baseline we randomly selected n new instances from
the pool of training data (random sampling). For uncer-
tainty sampling we used the confidence score of a maxi-
mum entropy classifier.4

Figure 2: Learning curves for random sampling, uncer-
tainty sampling and improved uncertainty sampling (5-fold
cross validation)

Figure 2 shows learning curves for our experiments. We
experimented with a varying number of training instances
(1, 2, 3, 5, 10) added in each iteration to the training set
(Table 4). Results for our WSD system are far below the
results of our human annotators. Comparing the curve for
AL with uncertainty sampling to the learning curve for ran-
dom sampling, we see that in the beginning the randomly
selected training instances yield better results. After adding
approximately 75 new training instances, however, the AL
approach outperforms random sampling.

4.4. Improved Uncertainty Sampling
The results suggest that early in the learning process when
our classifier is trained on a very small seed data set, it is
not beneficial to add the instances with the lowest classi-
fier confidence. Instead, we propose a dynamic version of
uncertainty sampling, taking into account how much the
classifier has learned so far. When trained on a small seed
set only, many of the predictions made by the classifier are
made with low confidence. During training, the minimum
confidence score for predicting word senses for unseen text

4http://maxent.sourceforge.net



inst./iteration RAND UNC IMP UNC
N=1 78.1 (747) 79.7 (464) 80.0 (508)
N=2 78.2 (746) 79.1 (536) 79.0 (500)
N=3 78.6 (744) 79.5 (465) 79.0 (504)
N=5 78.3 (705) 78.9 (565) 79.3 (530)
N=10 78.1 (670) 78.8 (500) 79.4 (490)

Table 4: Best F-score and number of training instances
added to the seed data for each AL setting (5-fold cross
validation)

increases, and the gap between minimum and maximum
confidence scores closes. We make use of this and, instead
of adding the n instances with the lowest confidence score,
we compute a threshold as follows:

threshold = maxConfidence −minConfidence (1)

Then we sort all instances in the pool according to the con-
fidence score for the classifier prediction and add the next
n instances with a confidence score below the threshold.
As training proceeds, the threshold drops. If there are no
instances with a confidence value below the threshold, we
select the n instances with the lowest confidence predicted
by the classifier. Figure 2 shows the learning curves for our
baseline (random sampling, RAN), for uncertainty sam-
pling (UNC) and for our improved method (IMP UNC).
The improved uncertainty sampling shows comparable per-
formance to UNC when trained on more data, while in the
beginning the learning curve is steeper.

5. Discussion
We achieved our best result of 80% F-score for automat-
ically disambiguating between the three senses of dro-
hen using the improved uncertainty sampling (N=1, 508
instances added). Trained on the same number of in-
stances, the basic uncertainty setting yields 78.8% F-score,
while for random sampling on an equally sized data set
we achieve 74.9% F-score. When training on all 750 in-
stances, results get worse (78.1%). This shows that some
sentences in the training set are not informative enough to
improve the classifier, or even add noise to the data and so
harm the learning process. There are only marginal dif-
ferences between the best results for UNC and IMP UNC
(Figure 2). While the careful selection of new training
instances (UNC, IMP UNC) does improve results for all
settings (N=1,2,3,5,10), performance remains nearly 20%
lower than that of human annotators. This shows that sim-
ply adding more instances to the training set does not solve
the knowledge acquisition bottleneck.
The results outlined above raise the following questions:

1. What is the reason for the great gap in performance
between human annotators and our automatic WSD
system?

2. Which are the instances the system gets wrong?

3. What is the impact of the different sampling methods
on the learning process?

In Section 5.1. we give a qualitative error analysis, outlin-
ing reasons for the difference in accuracy between human
annotation and the WSD system. In Section 5.2. we com-
pare the different sampling methods and their impact on the
training sets at different stages of the training process.

5.1. Error Analysis
How can we explain that the task of word sense disam-
biguation for drohen, being that easy for human annotators,
cannot be solved sufficiently by the machine learning clas-
sifier?
To answer this question, we looked at the errors made by
the classifier (Table 5). Results for our Active Learning
approaches after 500 iterations are considerably higher than
for random sampling (78.9 (UNC) and 79.6 (IMP) versus
74.2 (RAND)).

f1 f2 f3 f4 f5 avg. sd
RAND 76.0 74.0 71.2 76.8 72.8 74.2 2.3
UNC 79.2 77.2 79.6 79.6 78.8 78.9 1.0
IMP 79.2 78.0 78.8 80.4 81.6 79.6 1.4

Table 5: F-scores for different sampling methods and for
individual folds after 500 iterations

The most common mistake made by the classifier is to as-
sign RUN RISK instead of the COMMITMENT frame. This
is one of the typical problems for Machine Learning and re-
flects the class imbalance problem (Japkowicz and Stephen,
2002; Zhu and Hovy, 2007), where a highly skewed distri-
bution of classes in the data causes the classifier to overuse
the dominant class. In fact, the frames assigned by the clas-
sifier show a strong bias towards RUN RISK, which is the
most frequent frame in our data set. The classifier trained
on the random selection of training data has the strongest
bias and assignes the RUN RISK frame to 62.5% of the
instances in the test set. For basic and improved uncer-
tainty sampling, the bias is less strong, but they still over-
generalise and assign the dominant frame to around 58% of
all instances in the test set (Table 6), while the ”real” dis-
tribution in the pool data shows a frequency of around 50%
(Table 8) for the RUN RISK frame. The ranking of differ-
ent error types is the same for all three sampling methods
(Table 7).

Frame RAND UNC IMP
Commitment 17.6 20.8 21.0
Run risk 19.9 21.3 21.0
drohen1-salsa 62.5 57.9 58.0

Table 6: Avg. frame distribution in classifier output

Aside from the class imbalance problem, which can be
somewhat alleviated by controlling the distribution of
classes in the training set (as done by the AL sampling
methods), what else is responsible for the great gap in per-
formance between human annotators and the WSD toolkit?
For illustration let us look at some examples. Examples
5a and 5b show two very similar sentences, however, in
the first one the predicate drohen should be classified as
RUN RISK while the second instance belongs to the COM-
MITMENT frame. In example 5a we have the dative NP



correct predicted RAND UNC IMP
drohen1-salsa Commitment 3.7 3.8 2.0
Run risk drohen1-salsa 6.5 8.0 7.1
Commitment drohen1-salsa 8.7 9.8 9.0
Run risk Commitment 9.6 12.1 13.3
drohen1-salsa Run risk 27.5 27.3 29.0
Commitment Run risk 44.0 39.0 39.6

Table 7: Percentage of error types averaged over all five
folds

Erdogan-Partei which is threatened by a ban. In example
5b the NP Baath-Partei is in the nominative case and so
the agent of the threat event. Without lexical context, it
is nearly impossible to decide if the noun Partei (political
party) is the subject or the object of the predicate drohen
(threaten). For disambiguation we need to know the gram-
matical function of each of the NPs.

(5) a. Erdogan-ParteiDAT

Erdogan party
droht
is threatened

VerbotNOM

by ban
“RUN RISK frame”

b. Baath-ParteiNOM

Baath party
droht
threatens

USADAT

USA
“COMMITMENT frame”

For a syntactic parser, however, it is hard to identify the cor-
rect grammatical function, as German has a semi-free word
order which allows the subject to be in sentence-initial po-
sition as well as occuring after the verb. Case information
can help, but case syncretism in German not always allows
for an unambiguous interpretation. Most statistical parsers,
in fact, would incorrectly analyse the first NP as the subject,
as this is the unmarked position for the subject argument.
This would mislead the classifier to treat example 5a like
5b and assign it the COMMITMENT frame.
While for examples 5a and 5b syntactic information could
support the identification of the correct word sense, in the
following examples 6a and 6b syntactic knowledge does not
help at all, as both NPs are in fact subject NPs. What we
need for disambiguation is semantic knowledge which tells
us that home secretary has the semantic type sentient and
can fill the core frame element Speaker of the COMMIT-
MENT frame, while coup is an event or action which might
be the Cause in the RUN RISK frame.

(6) a. InnenministerNOM

home secretary
droht.
threatens

“COMMITMENT frame”
b. StaatsstreichNOM

coup
droht.
threatens

“RUN RISK frame”

Sometimes even semantic knowledge is not sufficient to
disambiguate between different frames or word senses.
Consider example 7a: without context it is not possible to
know if Asylbewerber (asylum seeker) is in the nominative
case or in the dative case. The semantic type of the second
argument is ambiguous, too, as Heim (institution) can stand
for the actual building, the institution, or metonymically for

the inhabitants of the institution. The context information
in 7b and 7c gives humans necessary clues how to inter-
pret the sentence, an automatic analysis, however, is not
straightforward.

(7) a. Asylbewerber???
asylum seeker

droht
threatens

Heim???

institution

b. AsylbewerberDAT

asylum seeker
droht
threatens

HeimNOM

institution
oder
or

Ausweisung
eviction
“Asylum seeker is threatened to be institution-
alised or expelled.”
RUN RISK frame

c. AsylbewerberNOM

asylum seeker
droht
threatens

HeimDAT

institution
mit
with

Feuer
fire
“Asylum seeker threatens institution with fire.”
COMMITMENT frame

These examples outlined some of the problems for auto-
matic WSD, explaining why the performance of automatic
WSD systems stand back so far behind human annotation.
Our experiments showed that even a large number of train-
ing instances is not sufficient to learn automatic frame dis-
tinctions. While syntactic features can support WSD to
a great extent (Chen and Palmer, 2005), for fine-grained
sense distinctions as the ones in FrameNet and its German
counterpart SALSA, we also need to have access to seman-
tic information and world knowledge.

5.2. Differences between the three sampling methods
Another important question concerns the impact of the
three sampling methods on the selection of new data. Fig-
ure 2 shows a similar learning curve for random sampling
and for the improved uncertainty sampling during the ini-
tial phase of learning, which both yield better performance
than basic uncertainty sampling. However, after adding
around 60 annotated instances to the seed data, all three
sampling methods achieve comparable accuracy. From that
point on random sampling is outperformed by both, uncer-
tainty sampling as well as improved uncertainty sampling.
This observation implies that the training sets for random
sampling and the improved uncertainty sampling contain
similar instances during early training, while in later stages
of the learning process basic and improved uncertainty
sampling seem to produce comparable training sets. To test
this assumption we compared the average distribution of
frames in the five folds for each sampling method after 30,
60, and 500 iterations.
Table 8 shows that the training set created by random sam-
pling best reflects the distribution of frames in the pool. The
more training iterations, the more similar the distribution of
frames in the RAND training set and in the pool. This leads
to an improved performance during the initial training iter-
ations (as the test set is taken from the same population and
thus shows the same distribution of frames).
Uncertainty sampling results in a more balanced training
set, concentrating on those instances which are hard to learn



frame RAND UNC INC UNC POOL
30 iterations

drohen1-salsa 29.6 24.8 34.5 24.4
Commitment 15.2 34.5 20.0 24.9
Run risk 55.2 40.7 45.5 50.7

60 iterations
drohen1-salsa 26.2 30.0 29.3 24.4
Commitment 22.6 31.0 27.7 24.9
Run risk 51.2 39.0 43.0 50.7

500 iterations
drohen1-salsa 24.1 27.4 27.4 24.4
Commitment 24.4 29.2 29.6 24.9
Run risk 51.5 43.4 43.0 50.7

Table 8: Avg. distribution of frames (%) in training sets for
different sampling methods after 30, 60 and 500 iterations
of training

for the classifier. As a result, the benefit we get from Active
Learning becomes noticable only after adding a sufficient
number of new instances. In our setting this is after around
60 iterations.
Improved uncertainty sampling is a compromise between
random sampling and basic uncertainty sampling. It still re-
flects the frame distribution in the pool data, but also takes
the actual learning process into consideration. Therefore
it overcomes the weakness of basic uncertainty sampling
during early training. Unfortunately, selecting better in-
stances during the first iterations does not seem to improve
results in the later training phases. After 500 training iter-
ations random sampling perfectly mirrors the distribution
in the pool data, while the proportion of frames in the data
sets created by basic and improved uncertainty sampling
is nearly identical, explaining the similar performance of
both methods after the initial phases of training. There is a
lingering suspicion that the size of our pool is not yet big
enough to allow the difference between basic uncertainty
sampling and the improved uncertainty sampling to become
visible. This, however, can only be tested on a larger data
set and therefore must await further investigation.
Another important difference between the training sets gen-
erated by the three sampling methods concerns the variance
in the different folds of our training sets. The Active Learn-
ing approaches create more homogeneous data sets where
results obtained on the individual folds show a much lower
standard deviation than the ones for the different folds for
random sampling (Table 5). This observation is in line with
(Ertekin et al., 2007), who showed that SVM based Active
Learning, where the most informative instances are consid-
ered to be the ones closest to the hyperplane, can provide
the learner with more balanced data sets. As a result the
AL approaches produce more reliable data sets for training,
yielding more consistent results.

6. Conclusions and Future Work
We presented an environment for Active Learning in a
WSD task, providing a user friendly GUI which supports
processing steps like feature selection, sampling methods
for selecting new training instances from the pool, and an
interface for manually adding correct labels to the selected

training instances. At present, MaJo implements a basic en-
vironment for AL, using uncertainty sampling and a maxi-
mum entropy classifier. We plan to integrate other ML al-
gorithms as well as more sophisticated sampling methods.
We also intend to expand the feature set used for WSD.
In the paper we questioned the assumption that the knowl-
edge acquisition bottleneck, which has been described as
the major impediment to solving the WSD problem (Gon-
zalo and Verdejo, 2006), can be solved by simply obtaining
more and more data. While the size of the training set cer-
tainly has a crucial impact on the performance of WSD sys-
tems, we showed that the claim “There’s no data like more
data” is not entirely true.
Our case study on the German verb drohen (threaten)
showed that an increase in size for the training set does not
always correspond to an increase in performance. Less, but
carefully selected examples can not only yield comparable
performance and thus reduce costs for human annotation,
they can even outperform classifier performance on a ran-
domly selected data set, as Active Learning improves the
quality of the data itself, resulting in more reliable and con-
sistent training sets.
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