
1.5. Implementing Lambda Calculus 21

1.5.2 Extending the DCG

Let’s see how to use this notation in DCGs. We’ll use a small DCG with e.g. an intran-
sitive verb and a proper name as well as the necessary rules to use them in sentences.
To use the resulting DCG for semantic construction, we have to specify the seman-
tic representation for each phrasal and lexical item. We do this by giving additional
arguments to the phrase markers of the DCG.

The resulting grammar is found in See file semanticDCG.pl.. Let’s have a look at
the phrasal rules first:

s(NP@VP) --> np(NP),vp(VP).

np(DET@N) --> det(DET),n(N).

np(PN) --> pn(PN).

vp(TV@NP) --> tv(TV),np(NP).

vp(IV) --> iv(IV).

The unary phrasal rules just percolate up their semantic representation (here coded
as Prolog variables NP, VP and so on), while the binary phrasal rules use @ to build
a semantic representation out of their component representations. This is completely
transparent: we simply apply function to argument to get the desired result.

1.5.3 The Lexicon

The real work is done at the lexical level. Nevertheless, the lexical entries for nouns
and intransitive verbs practically write themselves:

n(lambda(X, witch(X))) --> [witch], {vars2atoms(X)}.

n(lambda(X, wizard(X))) --> [wizard], {vars2atoms(X)}.

n(lambda(X, broomstick(X))) --> [broomstick], {vars2atoms(X)}.

n(lambda(X, man(X))) --> [man], {vars2atoms(X)}.

n(lambda(X, woman(X))) --> [woman], {vars2atoms(X)}.

iv(lambda(X, fly(X))) --> [flies], {vars2atoms(X)}.

If you do not remember the somewhat difficult representation of transitive verbs, look
at Section 1.4.4 again. Here’s the lexical rule for our only transitive verb form, ‘curses’:

tv(lambda(X, lambda(Y, X@lambda(Z, curse(Y,Z))))) --> [curses], {vars2atoms(X), vars2atoms(Y), vars2atoms(Z)}.

tv(lambda(X, lambda(Y, X@lambda(Z, love(Y,Z))))) --> [loves], {vars2atoms(X), vars2atoms(Y), vars2atoms(Z)}.

Recall that the λ-expressions for the determiners ‘every’ and ‘a’ are λP.λQ.∀x.(P@x→
Q@x) and λP.λQ.∃x.(P@x∧Q@x). We express these in Prolog as follows:

det(lambda(P, lambda(Q, exists(X, ((P@X) & (Q@X)))))) --> [a], {vars2atoms(P), vars2atoms(Q),vars2atoms(X)}.

det(lambda(P, lambda(Q, forall(X, ((P@X) > (Q@X)))))) --> [every], {vars2atoms(P), vars2atoms(Q),vars2atoms(X)}.

Finally, the ‘role-reversing’ (Section 1.4.4) representation for our only proper name:

pn(lambda(P, P@harry)) --> [harry], {vars2atoms(P)}.

pn(lambda(P, P@john)) --> [john], {vars2atoms(P)}.

pn(lambda(P, P@mary)) --> [mary], {vars2atoms(P)}.

22 Chapter 1. Semantic Construction

Prolog Variables?

Note that we break our convention (page 6) of representing variables by constants in
these lexical rules. All the λ-bound variables are written as Prolog variables instead of
atoms. This is the reason why we have to add the calls to vars2atoms/1 in some of
our phrasal rules (included in curly brackets - curly brackets allow us to include further
Prolog calls with DCG-rules). Whenever a lexical entry is retrieved, vars2atoms/1
replaces all Prolog variables in it by new atoms. Distinct variables are replaced by
distinct atoms. We won’t go into how exactly this happens - if you’re interested, have a
look at the code of the predicate. After this call, the retrieved lexical entry is in accord
with our representational conventions again.

This sounds complicated - so why do we do it? If you have read the sidetracks in the
previous section (Section 1.4.7 and Section 1.4.8), you’ve heard about the possibility
of accidental binding and the need for α-conversion during the semantic construction
process. Now by using Prolog variables in lexical entries and replacing them by atoms
on retrieval, we make sure that no two meaning representations taken from the lex-
icon ever contain the same λ-bound variables. In addition, the atoms substituted by
vars2atoms/1 are distinct from the ones that we use for quantified variables. Finally,
no other rules in our grammar ever introduce any variables or double any semantic
material. In result accidental bindings just cannot happen. So using Prolog variables
in the lexicon may be a bit of a hack, but that way we get away without implementing
α-conversion.

1.5.4 A First Run

Semantic construction during parsing is now extremely easy. Here is an example query:

?- s(Sem,[harry,flies],[]).

Sem = Sem=lambda(v1, v1@harry)@lambda(v2, fly(v2))

Or generate the semantics for ‘Harry curses a witch.’: s(Sem,[harry,curses,a,witch],[]).

The variables v1,v2 etc. in the output come from the calls to vars2atoms during
lexical retrieval. The predicate generates variable names by concatenating the letter v
to a new number each time it is called.

So now we can construct λ-terms for natural language sentences. But of course we
need to do more work after parsing, for we certainly want to reduce these complicated
λ-expressions into readable first-order formulas by carrying out β-conversion. For this
purpose we will now implement the predicate betaConvert/2.

1.5.5 Beta-Conversion

The first argument of betaConvert/2 is the expression to be reduced and the second
argument will be the result after reduction. Let’s look at the two clauses of the predicate
in detail. You find them in the file See file betaConversion.pl..

betaConvert(Functor@Arg,Result):-

betaConvert(Functor,lambda(X,Formula)),

1.5. Implementing Lambda Calculus 23

!,

substitute(Arg,X,Formula,BetaConverted),

betaConvert(BetaConverted,Result).

The first clause of betaConvert/2 is for the cases where ‘real’ β-conversion is done,
i.e. where a λ is thrown away and all occurences of the respective variable are replaced
by the given argument. In such cases

1. The input expression must be of the form Functor@Arg,

2. The functor must be (recursively!) reducible to the form lambda(X,Formula)

(and is indeed reduced to that form before going on).

If these three conditions are met, the required substitution is made and the result can
be further β-converted recursively.

This clause of betaConvert/2 makes use of a predicate substitute/4 (originally
implemented by Sterling and Shapiro) that we won’t look at in any more detail. It is
called like this:

substitute(Substitute,For,In, Result).

Substitute is substituted for For in In. The result is returned in Result.

1.5.6 Beta-Conversion Continued

Second, there is a clause of betaConvert/2 that deals with those expressions that do
not match the first clause. Note that the first clause contains a cut. So, the second
clause will deal with all and only those expressions whose functor is not (reducible
to) a λ-abstraction. The only well-formed expressions of that kind are formulas like
walk(john) & (lambda(X,talk(X))@john) and atomic formulas with arguments
that are possibly still reducible. Apart from that, this clause also applies to predicate
symbols, constants and variables (remember that they are all represented as Prolog
atoms). It simply returns them unchanged.

betaConvert(Formula,Result):-

compose(Formula,Functor,Formulas),

betaConvertList(Formulas,ResultFormulas),

compose(Result,Functor,ResultFormulas).

The clause breaks down Formula using the predicate compose/3. This predicate de-
composes complex Prolog terms into the functor and a list of its arguments (thus in our
case, either the subformulas of a complex formula or the arguments of a predication).
For atoms (thus in particular for our representations of predicate symbols, constants
and variables), the atom is returned as Functor and the list of arguments is empty.

If the input is not an atom, the arguments or subformulas on the list are recursively
reduced themselves. This is done with the help of:

24 Chapter 1. Semantic Construction

betaConvertList([],[]).

betaConvertList([Formula|Others],[Result|ResultOthers]):-

betaConvert(Formula,Result),

betaConvertList(Others,ResultOthers).

After that, the functor and the reduced arguments/subformulas are put together again
using compose/3 the other way round. Finally, the fully reduced formula is returned
as Result.

If the input is an atom, the calls to betaConvertList/2 and compose/3 trivially suc-
ceed and the atom is returned as Result.

Here is an example query with β-conversion:

?- s(Sem,[harry,flies],[]), betaConvert(Sem,Reduced).

Sem = lambda(A,A@mary)@lambda(B,walk(B)), Reduced = fly(harry)

Try it for ‘Harry curses a witch.’: s(Sem,[harry,curses,a,witch],[]), betaConvert(Sem,Res).

?- Question!

Above, we said that complex formulas like fly(harry) & (lambda(x,fly(x))@harry)

are split up into their subformulas (which are then in turn β-converted) by the last
clause of betaConvert/2. Explain how this is achieved at the example of this partic-
ular formula!

1.5.7 Running the Program

We’ve already seen a first run of our semantically annotated DCG, and we’ve now im-
plemented a module for β-conversion. So let’s plug them together in a driver predicate
go/0 to get our first real semantic construction system:

go :-

readLine(Sentence),

resetVars,

s(Formula,Sentence,[]),

nl, print(Formula),

betaConvert(Formula,Converted),

nl, print(Converted).

This predicate first converts the keyboard input into a list of Prolog atoms. Next, it
does some cleaning up that is needed to manage the creation of variable names during
lexicon retrieval (see Section 1.5.3). Then it uses the semantically annotated DCG
from See file semanticDCG.pl. and tries to parse a sentence.

Next, it prints the unreduced λ-expression produced by the DCG. Finally, the λ-expression
is β-converted by our predicate betaConvert/2 and the resulting formula is printed
out, too.

In order to run the program, consult runningLambda.pl at a Prolog prompt:

