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Overview

u Scope ambiguities

u Montague's analysis of scope

u Underspecification

u Dominance graphs

u Representing dominance graphs in Prolog



Scope ambiguities

u Some sentences have more than one possible 
meaning.

u Example: 
"Every swimmer wants a medal."

1. ..., namely, the 200m Freestyle gold medal.

∃y medal(y) ∧ (∀x swimmer(x) → want(x,y))

2. ..., but not necessarily the same one.

∀x swimmer(x) → (∃y medal(y) ∧ want(x,y))



Semantic ambiguity: The problem

Sentence Syntax
semantic repres. 1
semantic repres. 2
semantic repres. 3
semantic repres. 4

u But: The semantics construction process 
we have so far is incapable of computing 
more than one meaning representation for 
a sentence!



First solution: Montague 1974

u We can only construct one semantic 
representation per syntactic representation.

u So let's make more syntactic representations!

u New grammar rule ("quantifying-in") allows us to 

move NPs in the syntax tree.

u Change semantics construction rules so the two 

semantic representations can be derived from 
changed trees ("Montague's Trick").



Montague: Basic syntactic analysis
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Montague: Semantics Construction

u Semantic representations for NPs as 
yesterday:

– "every swimmer":

λP∀x.swimmer(x) → P(x)

– "a medal":

λQ∃y.medal(y) ∧ Q(y)

u Today, we use a more intuitive semantics for 
transitive verbs:

– λz1 λz2 want(z1,z2)



Montague's Trick

u The semantic representation of the transitive 
verb is now exactly the same as it was on 

Monday.

u The semantic representation for the trace ti is 

the free variable xi.

u Verb semantics is first applied to these 

variables.

u Then the variables are abstracted over as the 

NPs are recombines with the sentence.



Montague: Reading 1
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(λz1 λz2 want(z1,z2))@x1@x2

⇒ want(x1,x2)

(λQ∃y medal(y) ∧ Q(y))@λx1want(x1,x2)

⇒ ∃y (medal(y) ∧ want(x1,y))

(λP∀x.swimmer(x) → P(x)) @ λx2∃y (medal(y) ∧ want(z1,y))

⇒ ∀x.swimmer(x) → ∃y (medal(y) ∧ want(x,y))



Montague: Reading 2

VP

S

NP1

a medal

NP2

every swimmer

TV

wants

S

NP

t1

S

NP

t2

(λz1 λz2 want(z1,z2))@x1@x2

⇒ want(x1,x2)

(λP∀x.swimmer(x) → P(x)) @ λx2 want(x1,x2

⇒ ∀x.swimmer(x) → want(x,x2)

(λQ∃y medal(y) ∧ Q(y))@λx1∀x.swimmer(x) → want(x,x2)

⇒ ∃y medal(y) ∧ ∀x.swimmer(x) → want(x,y)



Montague: The big picture

Sentence
Syntax semantic repres. 1

semantic repres. 2
semantic repres. 3
semantic repres. 4Syntax

Syntax
Syntax

u So: We get the two semantic representations 
by introducing a syntactic ambiguity and 

applying Montague's Trick.



Montague: Does it work?

u We can now have more than one semantic 
representation per sentence.

u But: We have to stipulate that scope 
ambiguities are syntactic ambiguities. Do we 

want that?

u Intermediate formulas have free variables that 

are systematically captured.



Fixing Montague

u Montague can be modified so the semantic 
representations can be computed from a 
single syntactic analysis: 

– Cooper 1983 / Keller 1988

– Hobbs & Shieber 1987

Sentence
semantic repres. 1
semantic repres. 2
semantic repres. 3
semantic repres. 4

Syntax



Explosion of Readings

u A sentence with more than one scope ambiguity can 
have an enormous number of readings:

Most politicians can fool most voters on most issues most 

of the time, but no politician can fool every voter on every 

single issue all of the time.

(ca. 600 readings, Hobbs) 

u Modern large-scale grammars predict a lot of scope 
readings even for harmless-looking sentences:

But that would give us all day Tuesday to be there.

(ca. 65.000 readings, according to ERG grammar)

u In general, scope ambiguities contribute a number of 
readings exponential in the number of quantifiers (and 
other scope bearers).



Enumerating readings is expensive

u We'd like to avoid enumerating these many 
readings.

u Most of the readings were not meant by the 
speaker.

u Do people enumerate readings of a scope 
ambiguity?

u With all approaches we have seen so far, we 
must enumerate all readings before we can do 

anything else.



Scope Underspecification

u So let's avoid enumerating the readings for as 
long as we can.

u Take a single syntactic analysis and derive a 
single underspecified semantic representation

from it. 

u Possibly perform inferences on underspecified 

descriptions to remove unwanted readings.

u Then enumerate readings from description by 

need.



Scope Underspecification: The big picture

Sentence
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Some underspecification formalisms

u QLF (Alshawi & Crouch 92)

u UDRT (Reyle 93)

u Hole Semantics (Bos 96)

u MRS (Copestake et al. 99)

u Dominance constraints/graphs (Egg et al. 98, etc.)



Dominance graphs: The basic idea

u Read FOL formulas (including lambdas) as 
trees.

u Describe these trees using graphs.

u Use special edges to represent variable 

binding.



Formulas as trees

"Every athlete is in Athens."

∀x athlete(x) → in_athens(x)

∀x

→

@ @

athlete x in_athens x



Trees + Binding Edges = Lambda Structures

∀

→

@ @

athlete var in_athens var

u We use binding edges to indicate variable 
binding, rather than variable names. 

... but we still draw variable names on the slides because
they're easier to read.



Describe Trees Using Graphs

"Every swimmer wants a medal."
∃y medal(y) ∧ ∀x.swimmer(x) → want(x,y)

∀x.swimmer(x) → ∃y medal(y) ∧ want(x,y)
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Describe Trees Using Graphs

"Every swimmer wants a medal."
∃y medal(y) ∧ ∀x.swimmer(x) → want(x,y)
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Dominance graphs in the big picture

Sentence

semantic repres. 1
semantic repres. 2
semantic repres. 3
semantic repres. 4

Syntax USR
dominance
graphs

lambda
structures



Dominance graphs, more formally

u A dominance graph is a directed graph with 
node labels.

u There are three kinds of edges:

– tree edges (solid)

– dominance edges (dotted)

– binding edges (dashed arrows)

u Tree edges form a collection of trees.

u Dominance edges go from holes to roots.



What does a dominance graph mean?

u A lambda structure satisfies a dominance 
graph if we can embed the graph into the tree 

such that

– no two labelled graph nodes are mapped to 

the same tree node;

– all labels, solid edges, and binding edges 
are present in the tree;

– whenever (u,v) is a dominance edge in the 
graph, there is a path from u to v over solid 

edges in the tree.



Solutions of dominance graphs
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Not a solution
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Not a solution either
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Solutions can be larger than graph
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(but: see Fuchss et al., ACL 04)



Dominance graphs and dominance constraints

u Dominance graphs can be seen as graph 
representations of normal dominance 

constraints.

u Dominance constraints are a logical language 

interpreted over trees.

u Can be extended to the Constraint Language 

for Lambda Structures (CLLS): Describe not 
just scope, but also anaphora and ellipsis.

u See Egg et al. (2001), JoLLI.



Dominance graphs in Prolog

u Need to represent nodes and edges of the 
graph.

u Nodes as atoms.

u Edges as terms whose arguments are atoms.



Dominance graphs in Prolog

usr(Ns, LEs, DEs, BEs)

Nodes:
a list of atoms

Labelling edges:
a list of terms
label(x f(y))

Dominance edges:
a list of terms
dom(x y)

Binding edges:
a list of terms
lambda(x y)



An Example

∀

→

@

@athlete var

in_athens var

usr([x1,x2,x3,x4,x5,x6,x7,x8,x9],

[label(x1,forall(x2)), label(x5,athlete), ...],

[dom(x4,x7)],

[lambda(x9,x1)])



Summary

u Problem: How do we derive all readings of a 
semantically ambiguous sentence?

u Here: Scope ambiguity.

u Montague: Recast as syntactic ambiguity.

u Underspecification: Introduce additional layer 

of abstraction (underspecified description).

u Dominance graphs: See formulas as trees, 

describe them using graphs.



Towards the second round

u Solve the problem of semantic ambiguity by 
deriving a single dominance graph from a 

single syntactic analysis.

– We will show tomorrow how this is done.

u When you want the actual semantic readings, 
enumerate them from the dominance graph.

– We will show tomorrow how this is done.

u Modular system that factorises the ambiguity 

into a component of its own.


