
Computational Semantics
Day 3: Scope and Underspecification

Aljoscha Burchardt
Alexander Koller

Stephan Walter

ESSLLI 2004, Nancy

Overview

u Scope ambiguities

u Montague's analysis of scope

u Underspecification

u Dominance graphs

u Representing dominance graphs in Prolog

Scope ambiguities

u Some sentences have more than one possible
meaning.

u Example:
"Every swimmer wants a medal."

1. ..., namely, the 200m Freestyle gold medal.

∃y medal(y) ∧ (∀x swimmer(x) → want(x,y))

2. ..., but not necessarily the same one.

∀x swimmer(x) → (∃y medal(y) ∧ want(x,y))

Semantic ambiguity: The problem

Sentence Syntax
semantic repres. 1
semantic repres. 2
semantic repres. 3
semantic repres. 4

u But: The semantics construction process
we have so far is incapable of computing
more than one meaning representation for
a sentence!

First solution: Montague 1974

u We can only construct one semantic
representation per syntactic representation.

u So let's make more syntactic representations!

u New grammar rule ("quantifying-in") allows us to

move NPs in the syntax tree.

u Change semantics construction rules so the two

semantic representations can be derived from
changed trees ("Montague's Trick").

Montague: Basic syntactic analysis

Every swimmer wants a medal.

Det N TV Det N

NPNP

VP

S

Montague: Quantifying In

VP

S

NP

a medal

NP

every swimmer

TV

wants

Montague: Quantifying In

VP

SNP1

a medal

NP

every swimmer

TV

wants

S

NP

t1

Montague: Quantifying In

VP

SNP1

a medal

NP2

every swimmer

TV

wants

S

NP

t1

S

NP

t2

Montague: Semantics Construction

u Semantic representations for NPs as
yesterday:

– "every swimmer":

λP∀x.swimmer(x) → P(x)

– "a medal":

λQ∃y.medal(y) ∧ Q(y)

u Today, we use a more intuitive semantics for
transitive verbs:

– λz1 λz2 want(z1,z2)

Montague's Trick

u The semantic representation of the transitive
verb is now exactly the same as it was on

Monday.

u The semantic representation for the trace ti is

the free variable xi.

u Verb semantics is first applied to these

variables.

u Then the variables are abstracted over as the

NPs are recombines with the sentence.

Montague: Reading 1

VP

SNP1

a medal

NP2

every swimmer

TV

wants

S

NP

t1

S

NP

t2

(λz1 λz2 want(z1,z2))@x1@x2

⇒ want(x1,x2)

(λQ∃y medal(y) ∧ Q(y))@λx1want(x1,x2)

⇒ ∃y (medal(y) ∧ want(x1,y))

(λP∀x.swimmer(x) → P(x)) @ λx2∃y (medal(y) ∧ want(z1,y))

⇒ ∀x.swimmer(x) → ∃y (medal(y) ∧ want(x,y))

Montague: Reading 2

VP

S

NP1

a medal

NP2

every swimmer

TV

wants

S

NP

t1

S

NP

t2

(λz1 λz2 want(z1,z2))@x1@x2

⇒ want(x1,x2)

(λP∀x.swimmer(x) → P(x)) @ λx2 want(x1,x2

⇒ ∀x.swimmer(x) → want(x,x2)

(λQ∃y medal(y) ∧ Q(y))@λx1∀x.swimmer(x) → want(x,x2)

⇒ ∃y medal(y) ∧ ∀x.swimmer(x) → want(x,y)

Montague: The big picture

Sentence
Syntax semantic repres. 1

semantic repres. 2
semantic repres. 3
semantic repres. 4Syntax

Syntax
Syntax

u So: We get the two semantic representations
by introducing a syntactic ambiguity and

applying Montague's Trick.

Montague: Does it work?

u We can now have more than one semantic
representation per sentence.

u But: We have to stipulate that scope
ambiguities are syntactic ambiguities. Do we

want that?

u Intermediate formulas have free variables that

are systematically captured.

Fixing Montague

u Montague can be modified so the semantic
representations can be computed from a
single syntactic analysis:

– Cooper 1983 / Keller 1988

– Hobbs & Shieber 1987

Sentence
semantic repres. 1
semantic repres. 2
semantic repres. 3
semantic repres. 4

Syntax

Explosion of Readings

u A sentence with more than one scope ambiguity can
have an enormous number of readings:

Most politicians can fool most voters on most issues most

of the time, but no politician can fool every voter on every

single issue all of the time.

(ca. 600 readings, Hobbs)

u Modern large-scale grammars predict a lot of scope
readings even for harmless-looking sentences:

But that would give us all day Tuesday to be there.

(ca. 65.000 readings, according to ERG grammar)

u In general, scope ambiguities contribute a number of
readings exponential in the number of quantifiers (and
other scope bearers).

Enumerating readings is expensive

u We'd like to avoid enumerating these many
readings.

u Most of the readings were not meant by the
speaker.

u Do people enumerate readings of a scope
ambiguity?

u With all approaches we have seen so far, we
must enumerate all readings before we can do

anything else.

Scope Underspecification

u So let's avoid enumerating the readings for as
long as we can.

u Take a single syntactic analysis and derive a
single underspecified semantic representation

from it.

u Possibly perform inferences on underspecified

descriptions to remove unwanted readings.

u Then enumerate readings from description by

need.

Scope Underspecification: The big picture

Sentence

semantic repres. 1
semantic repres. 2
semantic repres. 3
semantic repres. 4

Syntax USR

Some underspecification formalisms

u QLF (Alshawi & Crouch 92)

u UDRT (Reyle 93)

u Hole Semantics (Bos 96)

u MRS (Copestake et al. 99)

u Dominance constraints/graphs (Egg et al. 98, etc.)

Dominance graphs: The basic idea

u Read FOL formulas (including lambdas) as
trees.

u Describe these trees using graphs.

u Use special edges to represent variable

binding.

Formulas as trees

"Every athlete is in Athens."

∀x athlete(x) → in_athens(x)

∀x

→

@ @

athlete x in_athens x

Trees + Binding Edges = Lambda Structures

∀

→

@ @

athlete var in_athens var

u We use binding edges to indicate variable
binding, rather than variable names.

... but we still draw variable names on the slides because
they're easier to read.

Describe Trees Using Graphs

"Every swimmer wants a medal."
∃y medal(y) ∧ ∀x.swimmer(x) → want(x,y)

∀x.swimmer(x) → ∃y medal(y) ∧ want(x,y)

∀x

swimmer

→

x

@ ∃y

medal y

∧

@

want x

y

@

@

∀x

swimmer

→

x

@

∃y

medal y

∧

@

want x

y

@

@

Describe Trees Using Graphs

"Every swimmer wants a medal."
∃y medal(y) ∧ ∀x.swimmer(x) → want(x,y)

∀x.swimmer(x) → ∃y medal(y) ∧ want(x,y)

∀x

swimmer

→

x

@

want x

y

@

@

∃y

medal y

∧

@

Dominance graphs in the big picture

Sentence

semantic repres. 1
semantic repres. 2
semantic repres. 3
semantic repres. 4

Syntax USR
dominance
graphs

lambda
structures

Dominance graphs, more formally

u A dominance graph is a directed graph with
node labels.

u There are three kinds of edges:

– tree edges (solid)

– dominance edges (dotted)

– binding edges (dashed arrows)

u Tree edges form a collection of trees.

u Dominance edges go from holes to roots.

What does a dominance graph mean?

u A lambda structure satisfies a dominance
graph if we can embed the graph into the tree

such that

– no two labelled graph nodes are mapped to

the same tree node;

– all labels, solid edges, and binding edges
are present in the tree;

– whenever (u,v) is a dominance edge in the
graph, there is a path from u to v over solid

edges in the tree.

Solutions of dominance graphs

∀x

man

→

x

@ ∃y

woman y

∧

@

love x

y

@

@

∀x

man

→

x

@

∃y

woman y

∧

@

love x

y

@

@

Solutions of dominance graphs

∀x

man

→

x

@

∃y

woman y

∧

@

love x

y

@

@

∀x

man

→

x

@

∃y

woman y

∧

@

love x

y

@

@

Not a solution

∀x

man

→

x

@

∃y

woman y

∧

@

love x

y

@

@

∀x

man

→

x

@

love x

y

@

@

?

Not a solution either

∀x

man

→

x

@

∃y

woman y

∧

@

love x

y

@

@

∀x

man

→

x

@

love x

y

@

@

∃y

woman y

∧

@

foo

a

?

Solutions can be larger than graph

∀x

man

→

x

@

∃y

woman y

∧

@

love x

y

@

@

∀x

man

→

x

@

∃y

woman y

∧

@

love x

y

@

@

bar

baz

foo

(but: see Fuchss et al., ACL 04)

Dominance graphs and dominance constraints

u Dominance graphs can be seen as graph
representations of normal dominance

constraints.

u Dominance constraints are a logical language

interpreted over trees.

u Can be extended to the Constraint Language

for Lambda Structures (CLLS): Describe not
just scope, but also anaphora and ellipsis.

u See Egg et al. (2001), JoLLI.

Dominance graphs in Prolog

u Need to represent nodes and edges of the
graph.

u Nodes as atoms.

u Edges as terms whose arguments are atoms.

Dominance graphs in Prolog

usr(Ns, LEs, DEs, BEs)

Nodes:
a list of atoms

Labelling edges:
a list of terms
label(x f(y))

Dominance edges:
a list of terms
dom(x y)

Binding edges:
a list of terms
lambda(x y)

An Example

∀

→

@

@athlete var

in_athens var

usr([x1,x2,x3,x4,x5,x6,x7,x8,x9],

[label(x1,forall(x2)), label(x5,athlete), ...],

[dom(x4,x7)],

[lambda(x9,x1)])

Summary

u Problem: How do we derive all readings of a
semantically ambiguous sentence?

u Here: Scope ambiguity.

u Montague: Recast as syntactic ambiguity.

u Underspecification: Introduce additional layer

of abstraction (underspecified description).

u Dominance graphs: See formulas as trees,

describe them using graphs.

Towards the second round

u Solve the problem of semantic ambiguity by
deriving a single dominance graph from a

single syntactic analysis.

– We will show tomorrow how this is done.

u When you want the actual semantic readings,
enumerate them from the dominance graph.

– We will show tomorrow how this is done.

u Modular system that factorises the ambiguity

into a component of its own.

