Computational Semantics
Day 4: Dominance Graphs, Round Two

Aljoscha Burchardt
Alexander Koller
Stephan Walter

ESSLLI 2004, Nancy

TP UNIVERSITAT v
J i) DEs .".9

SAARLANDES |

Overview

¢ Semantics construction for dominance graphs

¢ Implementation in our Prolog framework

¢ Solving dominance graphs

¢ Implementing the graph solver

&

iz UNIVERSITAT
{ i DES
L SAARLANDES

Recap: Yesterday

Sentence —— Syntax —— USR

/N

semantic repres. 1
semantic repres. 2
semantic repres. 3

semantic repres. 4

B

Recap: Yesterday

"Every swimmer wants a medal."
dy medal(y) A VX.swimmer(x) — want(x,y)
Vx.swimmer(x) — dy medal(y) A want(x,y)

K &
/ ‘\ _— /\\
@ 3 @ VX
swiméer \X F, d 1/ N |
//\\ meda y /~\
/@\ /@ /@ @
medal y /@ \y swimmer \X @/ \y
want X waﬁ \X

B

Recap: Yesterday

VX

3
T :
A
/ . T
/@ @ @/ ‘\
: N N e o HF,
SWiImer - x 1 medal ¥ swimmer \X
S e A
""""" / \
@ /@ @
AN
@/ N medal y @/ \y
PN Y RN
want X want X

B

Recap: Yesterday

VX

3 3
| g g
/‘\ A A
e @\ @ - @ VX
. N N |
swimmer X : medal . ¥ medal y /~\
@ """"" /@ @
AN
e N\ swimmer X @/ N
@ s 4
/ \ want X
want X

B

Semantics Construction

& First remaining question:

— How do we construct a dominance graph
from a syntactic analysis?

¢ We use Tuesday's modular syntax-semantics
framework.

¢ Replace semantic macros and combine rules
by new ones.

Semantics Construction Architecture

Phrases
(combinatorial)

Syntax Semantics

combine-rules

DCG —

combine-calls

\ | A

Words
(lexical)

lexicon-calls Semantic macros

N\ 7
lexicon-facts

&

Semantics Construction: Principles

¢ We use exactly the same DCG grammar and
lexicon facts as on Tuesday.

o For every node in the syntax tree, we derive a
dominance graph that represents the
semantic readings.

¢ Prolog representation of dominance graphs:
usr (Nodes, LCs, DCs, BCs)

+ First element of node list is the interface node
(or root). Use this to connect the subgraph to
other subgraphs.

A Simple Example

\

TV PN

beats Michael

Semantic macros for the example

¢ Most semantic macros introduce graphs that
have exactly one node, which is labelled by the
"core semantics".

¢ Macro for proper names:

pnSem (Symbol,
usr ([Root], [Root:Symbol], [],[])) .

¢ Macro for transitive verbs:

tvSem (Symbol,
usr ([Root], [Root:Symbol], [],[])) .

Semantics construction: The simple example

lan beats Michael

* semantic macros

Combining verbs and NPs

¢ General rule: The interface node of a graph for a
noun phrase is the node that will be plugged into
the verb as an argument.

& For proper names, this means we don't need to do
any real work:
combine (np:NP, [pn:NP]).

Combine rules for verbs

combine(s:S, [np:NP,vp:VP]) :-—

kﬁﬂ UNIVERSITAT

@
combine (vp:V, [tv:TV,np:NP]) :- ‘///&\\\
TV NP

TV = usr ([TVRoot | _1,_,_,_),
NP = usr ([NPRoot|_1,_,_,_),
NewUsr = usr ([Root], [Root: (TVRoot@NPRoot)],

[1,01),
mergeUSR ([NewUsr, TV,NP],V) .

NP = usr ([TVRoot | _1,_,_,_),
VP = usr ([NPRoot|_J,_,_,_),
NewUsr = usr ([Root], [Root: (VPRootW@NPRoot)],

[1,01),
mergeUSR ([NewUsr,NP,VP],S) .

VP

Semantics construction: The simple example

lan beats Michael

Semantics construction: The simple example

 combine rules

‘ ‘ ‘ beat Michael

lan beats Michael

Semantics construction: The simple example

NP

PN
‘ ‘ ‘ beat Michael

lan beats Michael

Quantifiers

¢ The graph for a quantifier NP contains a
variable node and its binder, linked by
dominance and binding edges.

+ The interface node of the graph is the variable
node!

swimmer

every s

Semantic macro for determiners

detSem (uni,

usr ([Root,N1,N2,N3,N4,N5,N6,N7,N8,N9],
[Root : lambda (N1),N1:lambda (N2),
N2:forall (N3), N3: (N4 > Nb),
N4: (N6@N7), N5: (N8@N9), N6:var,
N/7:var, N8:var, N9:var],
(1,
[bind (N6, Root) ,bind (N7,N2),
bind (N8,N1),bind(N9,N2)])).

Ve
P P
-, A &
s \
Ve

’ 2 "R
/ P s ~
/ / S
\ ‘_9 £ S
\ < / \

. ¢ v I

every
var var var var

AP AQ Vx.(P@x — Q@X)

UNIVERSITAT

&4y DES
el SAARLANDES

M 1 o
il

Combine rule for determiners

combine (np:NP, [det:DET,n:N]) :—
DET = usr ([DETRoot | _ 1, ., _,_),
N = usr ([NRoot | 1, _,_,_),
NewUsr = usr(........),

@ A
\
® \
DET N \
I
/
/
‘& var

& This rule encodes Montague's Trick!

&

An example with determiners

Every swimmer sleeps

kﬁﬁ UNIVERSITAT

(i DES
= SAARLANDES

An example with determiners

@

A

\

\
swimmer)

/

/
) & var

every .~v sleep >

Every swimmer sleeps

kﬁﬁ UNIVERSITAT

[Wiedip DES
Ll SAARLANDES

An example with determiners

/N<
Det N
‘ ‘ ‘ cvery sleep

Every swimmer sleeps

AP AQ Vx.(P@x — Q@x)
@ swimmer
@ (Ay.sleep@y)

Scope ambiguities

1 \
Swimmer I medal

ﬁ UNIVERSITAT
) O

SAARLANDES

Scope ambiguities

swimmer

Det N TV Det N .“.:.:.'.'."""-x-'.:;
‘ ‘ ‘ ‘ ‘ ... , & var

Every swimmer wants a medal

kA ot &
il

UNIVERSITAT)
jiEk i ES .
> SAARLANDES

Scope ambiguities

/ /

TV Det

Every swimmer wants a medal

kw TP UNIVERSITAT
WEEiP DES
=) SAARLANDES

every

swimmer

Semantics construction: Summary

By plugging new rules into yesterday's syntax-
semantics framework, we can compute
dominance graphs for English sentences.

Changed semantic macros to give us
dominance graphs for lexicon entries.

Combine rules plug subgraphs together by
connecting their interface nodes.

Always apply verb semantics to interface
variable of an argument NP.

Underspecification in semantics construction

¢ Combine rule of determiners encodes
Montague's Trick.

+ Variable and binder are introduced together:
No capturing necessary!

¢ Need fewer lambdas because we can now
talk about positions in formulas explicitly.

o All large-scale grammars with semantics use
some form of underspecification.

Solving Dominance Graphs

¢ Now we know

— how to model scope ambiguities with
dominance graphs

— how to represent dominance graphs in
Prolog

— how to compute dominance graphs for
English sentences.

¢ What's still missing: How to compute the trees
(= formulas) that a graph represents?

Solved Forms

¢ We have seen yesterday that every solvable
graph has an infinite number of solutions
(= trees into which it can be embedded).

Solved Forms

¢ Thus, we aim at enumerating all solved forms
of a dominance graph and not all solutions.

¢ A dominance graph in solved form is a graph
whose tree and dominance edges are a
forest.

¢ A graph G'is a solved form of G iff G' is in
solved form and if there is a path from uto v in
G (over tree and dominance edges), there is
also a path fromutovin G

Solved Forms and Solutions

¢ Can consider solved forms as representatives

of classes of solutions that only differ in
"irrelevant details".

B

Solving Dominance Graphs

& Solver algorithm applies three graph
simplification rules and then calls itself
recursively:

— Choice
— Parent Normalisation
— Redundancy Elimination

+ Detect unsolvability: Test for cycles.

¢ Prolog implementation.

The Choice Rule

+ Driving force behind solver is the Choice rule:
Which of two trees comes first?

The Choice Rule

& Every application of Choice arranges the
dominance parents of one node.

¢ Eventually, the dominance parents of all
nodes will be arranged.

& Choice rule is sound: Every tree that satisfies
original graph also satisfies one of the two
possible results of the Choice application.

Cleaning Up I: Parent Normalisation

¢ Parent Normalisation changes a dominance
edge (u,v) into a dominance edge (u,w),

where w is the parent of v over a solid edge.

Cleaning Up Il: Redundancy Elimination

¢ Redundancy Elimination deletes an edge (u,v)
whenever there is a path from u to v that
doesn't use this edge.

Detecting Unsolvabillity

¢ Every dominance graph that has a cycle
(using only tree and dominance edges) is
unsolvable.

The Enumeration Algorithm

Apply Redundancy Elimination and Parent
Normalisation exhaustively.

If the graph has a cycle, it is unsolvable.

If there is a node with two incoming
dominance edges, pick one and apply Choice
once. Then continue with Step 1 for each of

the resulting graphs.

Otherwise, the dominance graph is in solved
form.

Search Tree

ACEP UNIVERSITAT
- DES
: SAARLANDES

The Algorithm in Prolog

Input: Output:
An USR List of solved form

Case 1:

solve (Usr, SFs) :- Choice applicable

normalize (Usr, NormalUsr),
distribute (NormalUsr, Distl, Dist2),
solve (Distl, SFsl),

solve (Dist2, SFs2),

append (SFsl, SFs2, SFs).

solve (Usr, [NormalUsr]) :-

. Case 2:
normalize (Usr, NormalUsr), Solved Eorm
\+ hasCycle (NormalUsr) .

Case 3:
solve(_Usr, []). Cycle

AER UNIVERSITAT < v)
i 2 DES P 9
v SAARLANDES

Subroutines

¢ The algorithm uses some other predicates.
These are all available on the course website.

¢ Here we look at
— distribute
— elimRedundancy

The predicate "distribute”

distribute (usr (Ns, LCs,DCs, BCs

)
usr (Ns, LCs, [dom (X, Y) |DCs],BCs)
) |IDCs],BCs)

usr (Ns, LCs, [dom (Y, X

member (dom (X, 2), DCs),
member (dom(Y, 2), DCs),
X \==

kﬁﬁ UNIVERSITAT

(i DES
= SAARLANDES

)

The predicate "elimRedundancy”

normalize (Usr, Normal) :-—
parentNormalization (Usr, Lifted),
elimRedundancy (Lifted, Normal) .

elimRedundancy (usr (Ns, L.Cs,DCs,BCs), Irr) :-—
select (dom(X,Y), DCs, DCsRest),

reachable (Y, X,usr (Ns, LCs,DCsRest,BCs)),

|
-7

elimRedundancy (usr (Ns, LCs,DCsRest,BCs), Irr).

elimRedundancy (Usr, Usr) .

- 4
A5 UNIVERSITAT (Y :9)
it ot 8 - -l

(51 DES
Ll SAARLANDES

A Note on Efficiency

¢ The implementation is correct, but:

— checking for cycles is not a complete
unsatisfiability test: Search space may be
too large.

— Redundancy Elimination, Choice, etc. are
not implemented efficiently.

+ Both problems can be solved. Best current
iImplementations enumerate over 100.000
solved forms per second (Bodirsky et al.

2004).

A Note on Formalisms

¢ Dominance graphs are equivalent to normal
dominance constraints (Althaus et al. 03;
Egg et al. 01).

¢ Hole Semantics (Bos 96) can be encoded into

normal dominance constraints (Koller et al. 03).

¢ MRS (Copestake et al. 99) can be encoded
into normal dominance constraints
(Niehren & Thater 03; Fuchss et al. 04).

Summary

¢ Semantics construction for dominance graphs:

— use Tuesday's framework
— use interface nodes to combine subgraphs

— clean construction that introduces variables
and binders together.

¢ Solving dominance graphs:
— enumerate solved forms
— driving force is Choice rule
— Prolog implementation very concise
— can be made efficient (not in Prolog)

State of the art in underspecification

Well-understood formalisms.
Efficient solvers are available.

Large-scale grammars that compute
underspecified semantic descriptions are
available: e.g. English Resource Grammar
(Copestake & Flickinger, 2000).

Used, in one form or another, in most major
grammars that define semantics.

