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Shallow Semantic Parsing

The task of automatically identifying the semantic roles
conveyed by sentential constituents.

�

�

�

�Peter knows  the situtation.

Awareness
ContentCognizer

Relevant for several applications (IE, IR, QA)
Common semantic representation across languages
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Frame Semantics

Role-semantics paradigm based on conceptual structures
(Filmore et al., 2003).

Frame: AWARENESS

COGNIZER Peter knows the situation.
Pat believes that things will change.

CONTENT Peter knows the situation.
Pat believes that things will change.

Fr
am

e
E

le
m

en
ts

FE
E

s aware.v, believe.v, comprehend.v, conceive.v, imag-
ine.v, know.v, belief.n, consciousness.v, hunch.n, sus-
picion.v, conscious.a, knowledgeable.a
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Knowledge Acquisition Bottleneck

Data-driven development of shallow semantic parsers (see
e.g. Carreras and Màrquez, 2005) requires:

1 English FrameNet lexicon (> 500 frames, > 7, 000 lemmas)
2 English annotated example sentences (100,000 available)

Frame Semantics is (largely) language-independent:
annotation efforts for German, Spanish, and Japanese
Annotation laborious and time-consuming

Knowledge Acquisition Bottleneck:
Can we reduce annotation effort for new languages?
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Main Ideas

Use English FrameNet resource as basis
Project information to other languages using parallel
corpora

Two steps:
1 Project FrameNet lexicon (IGK meeting in Mertesdorf)
2 Project role information (now)
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Role Projection in a Parallel Corpus

1 Start with bi-sentence (translation) with word alignment

2 Obtain role-semantic analysis for source sentence
3 Check if target predicate can evoke the same frame
4 Project roles from source to target sentence

'

&

$

%Awareness

Peter knows the situtation.

Awareness

Peter kennt die Situtation.
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Cognizer Content

Assumption:
Bi-sentences have
parallel (role) semantics

Empirical result:
For English / German,
92% of roles match
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Related Work

Induction of multilingual morphological analyzers (Mann
and Yarowsky, 2001)
Projection of POS-tag information (Yarowsky et al., 2001)
Projection of bracketing information (Yarowsky et al., 2001)
Projection of dependency relations (Hwa et al., 2002)
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Word-based Projection

1 For each source semantic role, identify word span

2 Follow all word alignments
3 Target role span is union of all projections

'
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%

Peter and Mary left.

Peter und auch Maria  gingen.

Departing

Departing

Theme
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heuristic
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Syntax-based Projection

1 For each source role, identify source constituent(s)

2 Find optimal alignment between S and T constituents
3 Label target constituent(s) with role
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Peter und auch Maria  gingen.
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Departing
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NP
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Syntax-based Projection

1 For each source role, identify source constituent(s)
2 Find optimal alignment between S and T constituents
3 Label target constituent(s) with role'

&
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Peter and Mary  left.

Peter und auch Maria  gingen.

Departing

Departing

Theme

Theme

NP

NP

Can use any bracketing
information (chunks,
“full” constituents)
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Probabilistic Constituent Alignment

Two sets of constituents, C and C′

For each c ∈ C, find c′ ∈ C′ with maximal word overlap

1 Forward alignment
Align from source to target constituents
Assumes one target constituent per
source constituent

2 Backward alignment
Aligns from target to source constituents
Source constituents can correspond to
none or > 1 target constituents

S T

S T
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Experimental Set-up

Data
Sample of 1000 English-German Bi-sentences from
EUROPARL (Koehn, 2000)
Choice informed by FrameNet (E) and SALSA (D) lexicons
Two sides of each bi-sentence annotated independently

Annotators tagged equal amount of English and German
Inter-annotator agreement: κ = 0.84

Word alignment: GIZA++ (Och and Ney, 2003)
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Experimental Set-up

Method
Project roles from English gold annotation onto German
Evaluate against German gold annotation
Compare word-based, chunk-based, and
constituent-based models

Chunk-based models use Abney’s (1997, E) and Schmid
and Schulte im Walde’s (2000, D) base NP chunkers
Constituent-based models use Collins’ (1997, E) and
Dubey’s (2003, D) parsers

Sebastian Padó Cross-lingual Projection of Role-Semantic Information 36



Motivation
Role Projection in a Parallel Corpus

Projection Results
Conclusions

Experimental Set-up
Evaluation of Projection Models

Outline

1 Motivation
Shallow Semantic Parsing
Knowledge Acquisition Bottleneck

2 Role Projection in a Parallel Corpus
Word-based Projection
Syntax-based Projection

3 Projection Results
Experimental Set-up
Evaluation of Projection Models

Sebastian Padó Cross-lingual Projection of Role-Semantic Information 37



Motivation
Role Projection in a Parallel Corpus

Projection Results
Conclusions

Experimental Set-up
Evaluation of Projection Models

Word-based Projection

Model Precision Recall F-score
WordAlign 0.41 0.40 0.41
WordAlign + ConvexComp 0.46 0.45 0.46
UpperBnd 0.85 0.84 0.84

Alignments can guide projection task substantially
WordAlign exploits no linguistic information

ConvexComp improves the F-score
F-score sig worse than UpperBnd
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Chunk-based Projection

Model Prec Recall F-score
WordAlign + ConvexComp 0.46 0.45 0.46
ForwardAlign 0.46 0.25 0.32
BackwardAlign 0.30 0.24 0.27
BackwardAlign + ConvexComp 0.32 0.26 0.29
UpperBnd 0.85 0.84 0.84

ForwardAlign sig worse Recall than WordAlign
F-score sig worse than UpperBnd

Problem: Often, no chunks for source and target role span
Overlap maximisation does not yield sensible results
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Syntax-based Projection

Model Prec. Recall F-score
WordAlign + ConvexComp 0.46 0.45 0.46
ForwardAlign 0.70 0.60 0.65
BackwardAlign 0.60 0.46 0.52
BackwardAlign + ConvexComp 0.74 0.56 0.64
UpperBnd 0.85 0.84 0.84

ForwardAlign sig better than WordAlign and
BackwardAlign; sig worse than UpperBnd
One-to-one assumption (ForwardAlign) mostly warranted
Less guided alignment (BackwardAlign) requires
ConvexComp
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Error Analysis

1 Wrong or missing word alignments (e.g., PPs)�

�

�

�
He asks [       for a doctor].

Er fragt nach einem Arzt.

MSG

2 Translational divergences (wrong or missing projections)�

�

�

�
We claim and [        we] say [        ...]

[        Wir] behaupten und -- sagen [        ...]

MSG

MSG

SPKR

SPKR
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Conclusions

Summary
Principled framework for role projection
Semantic roles can be projected between languages
Bracketing can make up for problems in word alignment
Best model performs at 0.65 F-Score (UpperBnd is 0.84)
Base NP chunks not sufficient
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