Further Evidence for the Net-Hypothesis

Stefan Thater

EGK-Kolloquium, 13.01.05
Various scope underspecification formalisms have been proposed to model scope ambiguities:
- Minimal Recursion Semantics (MRS, Copestake & al. 1999)
- Dominance constraints (Egg & al. 2001)

Although these formalisms are based on the same ideas, they are not equivalent in general.
- Underspecified descriptions are interpreted differently
- “Nets” are a sub-class of underspecified descriptions for which MRS and dominance constraints are essentially equivalent (Niehren & Thater, 2003).
Net-Hypothesis

- Hypothesis: all linguistically relevant constrains computed by modern grammars are nets.
 - Theoretically interesting
 (How much expressivity is needed?)
 - Sharing resources between different formalisms
 (e.g., efficient dominance constraint solvers for MRS)
 - Grammar checking: automatic detection of inconsistencies
Previous Work

- Question: are all linguistically “relevant” underspecified descriptions nets?
- Fuchss & al., 2004:
 - 82% of the sentences of the Redwoods treebank are mapped to an MRS-net.
 - Conjecture: the remaining MRS expressions are systematically “incomplete.”
 - Non-nets have approx. 8 times more solutions on average than nets have.
Fuchss & al.: Limitations

- Only one parse (randomly chosen) was considered.
- The annotation in the treebank (the “right” MRS) was ignored.
- The syntactic derivation tree was not considered.
This Talk

- This talk presents the results of a recent evaluation that considers Fuchss & al’s limitations, and
- which supports a “look into” the grammar
 - Problematic syntactic rules
Overview

- Scope ambiguities and underspecification
- Minimal Recursion Semantics
- Dominance constraints
- What are nets?
- Are all underspecified descriptions nets?
- Conclusion
Scope Ambiguities

- “Every student reads a book.”
 - (every student x) (some book y) (x reads y)
 - (some book y) (every student x) (x reads y)

- Further examples:
 - “Every student did not pay attention.”
 - “Mary wants to marry a millionaire.”
 - […]
Scope Ambiguities: Problems

- **Problem #1**: formulation of a compositional syntax-semantics interface.

- **Problem #2**: combinatorial explosion of readings
 - “And once down in the saddle between the two Bjørndalstindane summits, we decided to put the rope back into the rucksack.” (6160 Readings)
Readings as Trees

- “Every student reads a book.”
 - $\text{every}_x(\text{student}(x), \text{a}_y(\text{book}(y), \text{read}(x,y)))$
 - $\text{a}_y(\text{book}(y), \text{every}_x(\text{student}(x), \text{read}(x,y)))$
Minimal Recursion Semantics

- “Every student reads a book.”
 - $\text{every}_x(\text{student}(x), a_y(\text{book}(y), \text{read}(x,y)))$
 - $a_y(\text{book}(y), \text{every}_x(\text{student}(x), \text{read}(x,y)))$
Interpretation (Informal)

- MRS descriptions are interpreted in terms of “scope resolved” MRS structures, or configurations.
- A configuration of an MRS description is a tree obtained by “plugging” tree fragments into each other.
 - A configuration must respect all dominance wishes.
 - All “holes” must be “plugged” at least once.
Example

- “Every student reads a book.”
 - $\text{every}_x(\text{student}(x), a_y(\text{book}(y), \text{read}(x,y)))$
 - $a_y(\text{book}(y), \text{every}_x(\text{student}(x), \text{read}(x,y)))$
MRS as Dominance Constraints

- “Every student reads a book.”
 - every\(_x\)(student\(_x\), a\(_y\)(book\(_y\), read\(_{x,y}\)))
 - a\(_y\)(book\(_y\), every\(_x\)(student\(_x\), read\(_{x,y}\)))
Interpretation (Informal)

- Dominance constraint are interpreted in terms of finite trees, represented by solved forms.
- A solved form of a dominance constraint is a “tree shaped” dominance constraint.
 - A solved form of a dominance constraint must respect the dominance wishes.
Example

- “Every student reads a book.”
 - $\text{every}_x(\text{student}(x), \text{a}_y(\text{book}(y), \text{read}(x,y)))$
 - $\text{a}_y(\text{book}(y), \text{every}_x(\text{student}(x), \text{read}(x,y)))$
The main difference between configurations and solved forms is that open “holes” must be filled in configurations.
What are Nets?

- Nets are a sub-class of underspecified descriptions for which configurations and solved forms coincide.
- Assumption: dotted lines in MRS graphs are interpreted as dominance wishes.
What are Nets?

- An MRS description (or dominance constraint) is a net iff all tree fragments satisfy one of the following schemata:
Example (Net)

- “Each section is also suitable as a single day tour.”
Example (Non-net)

- “The walk takes about 2-3 hours.”
Example (Non-net)

- “We leave Doralseter early this day and head to Bjørnhollia.”
Evaluation

- English Resource Grammar
 - October 2004 release
- LKB System
 - Parser
 - Constraint-solver
- Rondane treebank
 - Hiking domain (Norwegian tourist information)
 - 1034 derivation trees and MRS structures.
 - 810 sentences could be parsed
Evaluation (all Parses)

- 44686 derivation trees
 - 75% nets
 - 25% non-net
- Distribution of nets and non-nets
 - 71.7% (49%) only nets
 - 4.8% (3.6%) only non-nets
 - 23.5% (47.4%) both nets and non-nets
Evaluation (Best Parse vs. Gold)

- First/best parse only
 - 86% nets
- Annotated derivations (all)
 - 83.2% nets
 - 84.7% nets (well-formed MRS only)
- Annotated derivations (“filtered”)
 - * 87.9% nets
 - * 92.7% nets (well-formed MRS only)
Problem Rules

- Measure Noun Phrases
 - BARE_MEAS_NP (1347)
 - MEASURE_NP (2219)

- Sentence Fragments
 - FRAG_ADJ (78)
 - FRAG_PP_S (633)
 - FRAG_R_MOD_AP (30)
 - FRAG_R_MOD_I_PP (92)

- Coordinations
 - NCOORD_MID (830)

- [..]
Measure Noun Phrases

- “The walk takes about 2-3 hours.”
Sentence Fragments

- “Grand but a bit boring.”
Coordinations

- “Pick berries, fungi and flowers for your own pleasure.”
Evaluation (Gold)

- Further analysis of non-nets obtained by problem rules shows that they all follow the same pattern.
- This strongly suggests that all MRS obtained by a problem rule are “incomplete.”
- Only derivation trees without “problem rules”
 - 90.2% nets
 - 94% nets (well-formed only)
Conclusions

- The data indicates that
 - Nets are intended (best parse vs. arbitrary parse)
 Possible explanation: frequent rules are better maintained
 - Non-nets using “problem rules” are incompletely