(Starting) Deep Grammar Development for Mandarin Chinese

Yi Zhang

yzhang@coli.uni-sb.de
Computational Linguistics
Saarland University, Saarbrücken
Outline

- Introduction & Motivation (Survey)
- Chinese Syntax
- Semantics with MRS
- Conclusion & Future Work
Introduction & Motivation
Objective

- To develop a deep linguistic HPSG resource grammar for Mandarin Chinese, to ...
 - Fill in a gap in Chinese deep processing;
 - Testify the applicability of HPSG formalism to Chinese;
 - For application purpose.
Situation

- Very few reported systematic deep grammar development for Chinese
- Local linguistic theories are nice, though not formalized
- HPSG is NOT adopted by most of Chinese linguists (for some or other reasons).
 - “... Just as you have mentioned, researchers in mainland China don't show much interest on HPSG. They(We) know "a little" about HPSG but can not understand it thoroughly. I think it's a great pity for CL in China. ... ”
What Follows

- Chinese see themselves outside the international linguistics community.
What Follows

- Deep processing of Chinese is far lagging behind.
- Linguistic theories without formalism are not able to help the development of application.
- Cross-lingual application becomes extremely difficult, if not impossible.
Motivation

- There are matured systems for grammar engineering and efficient deep processing (LKB, PET, [incr tsdb ()], ...).
- Large scale deep grammar engineering has been carried out for a lot of languages.
- The experience gain from large scale grammar development enables quick starting of new grammar development (LinGO Grammar Matrix).
Motivation

- With a deep grammar, we can:
 - Parsing
 - Generation
 - Semantic analysis together with syntax
 - Treebanking
 -
Theoretical Framework

 - Pure syntax
 - Phrase based analysis
- HPSG (Pollard & Sag, 1994)
 - Typed Feature Structure
 - Unification based
 - Constraint based
 - Lexicalist
- MRS (Copestake et al., 1999) & (Copestake et al., 2001)
Platform & Resource

- LKB System
- LinGO Matrix Grammar (version 0.6).
- [incr tsdb()]
Chinese Syntax
Phenomena

- **No morphology**
 - ta kai che.
 - He drive car
 - `He drives a car.'
 - he conglai mei kai guo che.
 - he always not drive ASP car
 - `He has never driven a car.'
 - kai che bu rongyi.
 - drive car not easy
 - `Driving a car is not easy.'
 - ta xihuan kai che.
 - he love drive car
 - `He likes to drive the car.'

- **More complex syntax**
Phenomena

- Complex relation between syntax units and word categories

Indo-European Language

Chinese
Phenomena

0~N verbs in a sentence

- zhe ge ren piqi hao.
 this CL person temper good
 `This person has good temper.'
- wo kan bao.
 I read newspaper
 `I am reading the newspaper.'
- wo mai bao kan.
 I buy newspaper read
 `I bought the newspaper and read.'
- wo xiang mai bao kan.
 I want buy newspaper read
 `I want to buy some newspaper to read.'
- wo xiang qu mai bao kan.
 I want go buy newspaper read
 `I want to go to buy some newspaper to read.'
Approach

- (Zhu, 1982) & (Zhu, 1985) provided a thorough and consistent analysis of Chinese syntax, though not formalized.
- Settling the syntax theory in HPSG framework is a good choice.
Basic Word Categories

(Zhu, 1982) & (Yu, et al. 1998)

<table>
<thead>
<tr>
<th>basic word</th>
<th>extra word</th>
</tr>
</thead>
<tbody>
<tr>
<td>substantive</td>
<td>functional</td>
</tr>
<tr>
<td>content</td>
<td>predicate</td>
</tr>
<tr>
<td>noun</td>
<td>verb</td>
</tr>
<tr>
<td>temporal</td>
<td>adjective</td>
</tr>
<tr>
<td>spacial</td>
<td></td>
</tr>
<tr>
<td>direction</td>
<td></td>
</tr>
<tr>
<td>number</td>
<td></td>
</tr>
<tr>
<td>classifier</td>
<td></td>
</tr>
<tr>
<td>pronoun</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pronoun</td>
</tr>
</tbody>
</table>
Lexical Types

- Verb
Lexical Types

- Pronoun
Lexical Types

- **Classifier**
 - cl-unit-cword: unit classifier
 - cl-mass-cword: massive classifier
 - cl-meas-cword: measurement classifier
 - cl-volm-cword: volume classifier
 - cl-type-cword: type classifier
 - cl-shape-cword: shape classifier
 - cl-undet-cword: undetermined classifier
 - cl-vq-cword: verbal quantity classifier
 - cl-tq-cword: temporal quantity classifier
HEAD Feature

- For orthogonal features, rather than creating subtypes, I used features in `SYNSEM.LOCAL.CAT.HEAD`.

<table>
<thead>
<tr>
<th>Chinese</th>
<th>ZAI-V</th>
<th>V-ZHE</th>
<th>V-LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>děngdài (wait)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>jìdù (envy)</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>rúchǎng (enter)</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>xiězuò (write)</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>xiàngzhēng (resemble)</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>kěwàng (desire)</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>dàodá (arrive)</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>qīfú (fluctuate)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Valence Feature

- c-valence := valence &
 [SUBJ list, <-- subject
 OBJS list, <-- real objects
 POBJS list, <-- pseudo objects
 CCOMP list, <-- "complement"
 SPR list]. <-- specifiers

- Corresponding schemata
 - head-subj-phrase
 - head-obj-phrase
 - head-pobj-phrase
 - head-comp-phrase
 - head-spec-phrase
Phrasal Structure Rule Types

- Subject-Predicate
- Verbal-Object
- Verbal-Complement (Post-verb modifier)
- Adjunct-Head
 - Adjunct-Content
 - Adjunct-Predicate
- Serial Verb
- Pivotal
An Example

There are a lot of foreign students in our class.
Nominal Phrases

- Double-specifier account for Chinese NP (Say Kiat Ng, 1997)
- Some modifications to allow “Dem + Noun” construction.
Semantics with MRS
MRS Basic

- **Minimum Recursion Semantics**
 (Copestake et al., 1999) & (Copestake et al., 2001)
 - Flat semantic representation
 - Elementary Predication (EP)
 - a handle
 - a relation
 - a list of variable arguments
 - a list of scope arguments
 - Top handle
 - Constraints on scope relations (qeq condition)
the dog sleeps

- $<h0, <h1: \text{det}(x,h2,h3), h4: \text{dog}(x), h5: \text{sleep}(e,x)>,$

 \{h0 \text{ qeq } h5, h2 \text{ qeq } h4\}>

- the(x,dog(x),sleep(e,x))
- every dog probably chases some white cat
 - \(<h0, \{h1:every(x,h2,h3),h4:dog(x),h5:probably(h6),h7:chase(x,y),h8:some(y,h9,h10),h11:white(y),h11:cat(y)\},\{h0 qeq h5, h2 qeq h4, h6 qeq h7, h9 qeq h11\}>\)
 - probably(every(x, dog(x), some(y, white(y) ^ cat(y), chase(x, y))))
 every(x, dog(x), probably(some(y, white(y) ^ cat(y), chase(x, y))))
 every(x, dog(x), some(y, white(y) ^ cat(y), probably(chase(x, y))))
 probably(some(y, white(y) ^ cat(y), every(x, dog(x), chase(x, y))))
 some(y, white(y) ^ cat(y), probably(every(x, dog(x), chase(x, y))))
 some(y, white(y) ^ cat(y), every(x, dog(x), probably(chase(x, y))))
Problems with Chinese

- The syntax theory of (Zhu, 1982) & (Zhu, 1985) doesn't count for semantics. Semantic composition would be more difficult.
Problems with Chinese

- **Subject vs. ARG1**
 - women qu beijing.

 we go Beijing
 We go to Beijing.

 <h0,{h1:women_p(x1),h2:qu_v(e,x1,x2),h3:beijing_n(x2)},{h0 qeq h2}>

 - mingtian qu beijing.
 tomorrow go Beijing
 Somebody will go to Beijing tomorrow.

 <h0,{h1:mingtian_t(e),h2:qu_v(e,x1,x2),h3:beijing_n(x2)},{h0 qeq h2}>
Solution

- Further subcategorizing phrase structure types.
- Argument binding both in lexicon and in construction.

\[
\begin{align*}
\text{sp-pron-pred-phrase} & := \text{subj-pred-phrase} \& \text{head-subj-phrase} \& \\
& \quad [\text{NON-HEAD-DTR proun-cont-cword}]. \\
\text{sp-tempo-pred-phrase} & := \text{subj-pred-phrase} \& \\
& \quad [\text{SYNSEM.LOCAL.CAT.VAL} \#\text{val}, \\
& \quad \text{HEAD-DTR.SYNSEM.LOCAL} [\text{CAT.VAL} \#\text{val}, \\
& \quad \text{CONT.HOOK.INDEX} \#\text{event}], \\
& \quad \text{NON-HEAD-DTR temporal-cword} \& \\
& \quad [\text{SYNSEM.LOCAL.CONT.HOOK.INDEX} \#\text{event}]].
\end{align*}
\]
Conclusion & Future Work
Conclusion

- Syntax:
 - Basic word categories and phrase structure rules implemented.
- Semantics:
 - Semantics composition for basic phrase structures implemented.
Statistics

- Starting day: May 10th, 2004
- Lexical Types: 108
- Phrase Structure Rules: 43
 - Unary Rules: 5
 - Binary Rules: 38
- Lexicon: 10,069 entries
 - Noun: 3571
 - Verb: 2094
 - Adjective: 1471
 - Adverb: 719
 - Idiom: 552
- Lines of Grammar: 2,100 (excluding Matrix & lexicon entries).
Remaining Work

- Serial verb phrase
- Pivotal phrase
- Coordination phrase
- Other special constructions, including “ba” (disposal) construction and “bei” (passive) construction.
Remaining Work

- A larger test corpus.
- More comprehensive evaluation of grammar coverage.
Beyond Grammar Engineering

• Problem with Deep Processing
 – Efficiency
 • Much larger search space than shallow methods
 – Robustness
 • Heavily depends on grammar coverage
 – Ambiguity & Specificity
 • Too many analysis results
Beyond Grammar Engineering

- Combination of shallow and deep processing

Deep Processing

\[\text{MRS} \]
\[\text{RMRS} \]

Application (IR, IE, QA, ...)

Shallow Processing
Thank you!