Acquiring Knowledge for Coreference Resolution

EGK Seminar
13.06.2002
Olga Ourioupina
Overview

- Main Subtasks
- Existing Algorithms
 - pronominal anaphor
 - definite descriptions – coreference
 - definite descriptions – bridging
- My Proposal, Plans, ..
 - acquiring knowledge
 - using knowledge
Main Subtasks

- Identifying discourse-new entities
- Finding possible antecedent(s)
- Identifying the Relation Type
Pronominal anaphor

Baseline algorithms:
- take the previous NP
- take the previous subject NP

Accuracy – 60-70%
Pronominal anaphor

Traditional approaches

- RAP (Lappin & Leass, 1994) – syntax-based
- Centering (Grosz, Sidner, 1986) – focus tracking

Accuracy

- RAP – 86%
- LRC – 80%
- Mitkov – 87%
Pronominal anaphor

Alternative approaches

- Dagan & Itai, 1990 – corpus-based 87%
- Aone & Bennett, 1996 – decision trees 90%
- Kennedy & Boguraev, 1996 – RAP-based, no parsing 75%
- Mitkov, 1996 – no parsing 90%
- Baldwin, 1997 (COGNIAC) – no parsing R=64%, P=92%
Definite NPs (Coreference)

Baseline algorithms
- All NPs are coreferential
- All NPs with at least one common word are coreferential
- All NPs with the same head noun are coreferential

Accuracy on MUC-6 data (Soon et al., 2001)

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>89.9</td>
<td>31.8</td>
<td>47.0</td>
</tr>
<tr>
<td>ONE_WRD</td>
<td>55.4</td>
<td>36.6</td>
<td>44.1</td>
</tr>
<tr>
<td>HD_WRD</td>
<td>56.4</td>
<td>50.4</td>
<td>53.2</td>
</tr>
</tbody>
</table>
Definite NPs (coreference)

Models based on Commonsense Reasoning

- Extensive use of hand-coded commonsense knowledge
- Evaluation impossible

Sidner, 1972
Carter, 1987
Alshawi, 1992 (Core Language Engine)
Gardent & Konrad, 1999
Definite NPs (Coreference)

Real applications

<table>
<thead>
<tr>
<th>MUC-6 (1995)</th>
<th>R</th>
<th>P</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>best</td>
<td>59%</td>
<td>72%</td>
<td>65%</td>
</tr>
<tr>
<td>worst</td>
<td>36%</td>
<td>44%</td>
<td>40%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MUC-7 (1998)</th>
<th>R</th>
<th>P</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>best</td>
<td>56.6%</td>
<td>84.3%</td>
<td>67.7%</td>
</tr>
<tr>
<td>worst</td>
<td>52.5%</td>
<td>21.4%</td>
<td>30.4%</td>
</tr>
</tbody>
</table>
Definite NPs (Coreference)

Vieira, Poesio, Teufel,.. – knowledge-based approach

- WordNet
- Various heuristics
- (Corpora)

Accuracy (F):
- Identifying first-mentioned entities 70%
- Same-head NPs 71-77%
- Bridging (incl. Synonyms) 33%
Definite NPs (Coreference)

Other approaches

- Cardie & Wagstaff, 1999 – Coreference as Clustering
 Distance Metric based on Feature Vectors
 Features: Distance, Animacy, ..., Semantic Class (WordNet)
 Accuracy on MUC-6 data: R=53%, P=55%, F=54%

- Hartrumpf, 2001 – Combining Syntactico-Semantic rules and Corpus Statistics (German)
 ENTITY and SORT features from MultiNet
 Accuracy: R=55%, P=82%, F=66%
Definite NPs (bridging)

- Asher & Lascarides
 Theoretical analysis

- Vieira, Poesio, Teufel
 Implemented system, however, the performance is low.
Definite NPs

Gardent & Konrad – Using Model Generation for Definite NPs Resolution

- Huge hand-coded KB required
- Semantic representation of the whole sentence required
- Salience and precedence information not included
- Extremely slow for more than 4-5 entities
Acquiring Knowledge

What kind of knowledge do we need?

- (Almost) all the coreference resolution systems make use of WordNet, GermaNet,..

- Soon et al., 2001: 75% mistakes – due to the lack of semantic knowledge (63.3% – not enough features, 11.7% – errors in class determination).

- Not too sophisticated knowledge (sortal information, for example).
Acquiring Knowledge

Classification of Definite Descriptions based on the information required for their processing (Poesio & Vieira)

- Discourse new
- Anaphoric (same head)
- Syn/Hyp/Mer
- Names
- Compounds
- Events
- Discourse Topic
- Inference

The National Assembly, for the past year,..
Acquiring Knowledge

Classification of Definite Descriptions based on the information required for their processing (Poesio & Vieira)

- Discourse new
- Anaphoric (same head)
- Syn/Hyp/Mer
- Names
- Compounds
- Events
- Discourse Topic
- Inference

President Roh Tae
Woo‘s administration

The administration
Acquiring Knowledge

Classification of Definite Descriptions based on the information required for their processing (Poesio & Vieira)

- Discourse new
- Anaphoric (same head)
- Syn/Hyp/Mer
- Names
- Compounds
- Events
- Discourse Topic
- Inference

Examples:
- President Roh Tae Woo’s administration
- The government
Acquiring Knowledge

Classification of Definite Descriptions based on the information required for their processing (Poesio & Vieira)

- Discourse new
- Anaphoric (same head)
- Syn/Hyp/Mer
- Names
- Compounds
- Events
- Discourse Topic
- Inference

Pinkerton's Inc

The company
Classification of Definite Descriptions based on the information required for their processing (Poesio & Vieira)

- Discourse new
- Anaphoric (same head)
- Syn/Hyp/Mer
- Names
- Compounds
- Events
- Discourse Topic
- Inference

Individual investors and professional money managers contend.

They make the argument ...
Acquiring Knowledge

Classification of Definite Descriptions based on the information required for their processing (Poesio & Vieira)

- Discourse new
- Anaphoric (same head)
- Syn/Hyp/Mer
- Names
- Compounds
- Events
- Discourse Topic
- Inference

Stock market crash

The markets
Acquiring Knowledge

Classification of Definite Descriptions based on the information required for their processing (Poesio & Vieira)

- Discourse new
- Anaphoric (same head)
- Syn/Hyp/Mer
- Names
- Compounds
- Events
- Discourse Topic
- Inference

<text about oil companies>

The industry
Acquiring Knowledge

Classification of Definite Descriptions based on the information required for their processing (Poesio & Vieira)

- Discourse new
- Anaphoric (same head)
- Syn/Hyp/Mer
- Names
- Compounds
- Events
- Discourse Topic
- Inference

Last week’s earthquake
The suffering people
Classification of Definite Descriptions based on the information required for their processing (Poesio & Vieira)

- Discourse new: 47%
- Anaphoric (same head): 30%
- Syn/Hyp/Mer
- Names
- Compounds: 20%
- Events
- Discourse Topic
- Inference
Acquiring Knowledge

Classification of Definite Descriptions based on the information required for their processing (Poesio & Vieira)

- Discourse new
- Anaphoric (same head) 19%
- Syn/Hyp/Mer 24%
- Names 12%
- Compounds 12%
- Events 20%
- Discourse Topic 7%
- Inference 18%
Knowledge Sources – WordNet

WordNet (Miller, 1993)

Hyponyms: wordnet, sense 1

=> lexical database
=> electronic database, on-line database,..
=> database
=> information, info
=> message, content,..
=> communication
=> social relation
=> relation
=> abstraction
Knowledge Sources – WordNet

Information in WordNet

- Sorts (for coreference) – hypo/hyper
- Synonyms
- Meronyms/holonyms (for bridging)

Poesio, Vieira & Teufel, 1997 – Resolving Bridging References in Unrestricted Text

WordNet

Precision – max 28%
Recall – max 46%
Knowledge Sources – WordNet

Problems with WordNet

- Not all the words are covered (Proper Names!)
- Disambiguation problems
- Hierarchy problems

1. jackfruit, jak, jack – (immense East Indian fruit resembling breadfruit of ..)
2. jack – (an electrical device consisting of a connector socket ..)
3. jack – (game equipment ..)
4. jack – (small flag indicating a ship’s nationality)
5. jack, knave – (one of four face cards in a deck bearing a picture of a young prince)
6. jack – (tool for exerting pressure or lifting)
7. jack – (any of several fast-swimming predacious fishes ..)
8. jack, jackass – (male donkey)
Knowledge Sources – WordNet

Problems with WordNet

- Not all the words are covered (Proper Names!)
- Disambiguation problems
- Hierarchy problems

Holonyms: tree_branch
Sense 1
limb, tree branch
PART OF: tree
Knowledge Sources – WordNet

Problems with WordNet

- Not all the words are covered (Proper Names!)
- Disambiguation problems
- Hierarchy problems

1. (58) cut – (separate with or as if with an instrument; “Cut the rope”)
4. (2) cut – (make an incision or separation; “cut along the dotted line”)
29. cut – (reap or harvest; “cut grain”)
30. cut – (fell by sawing; “The Vietnamese cut a lot of timber..”)
33. cut – (shorten as if by severing the edges or ends of; “cut my hair”)
41. cut – (..)
Knowledge Sources – WordNet

Problems with WordNet

- Not all the words are covered (Proper Names!)
- Disambiguation problems
- Hierarchy problems

Overview: branch
1. (19) branch, subdivision, arm – (an administrative division ..)
2. (15) branch – (a division of a stem .. of a plant)
3. (5) branch, fork, leg – (a part of a forked or branching shape)
6. (..)

Holonyms: branch
Sense 3
branch, fork, leg

PART OF: furcation, bifurcation, forking
Knowledge Sources – WordNet

Problems with WordNet

- Not all the words are covered (Proper Names!)
- Disambiguation problems
- Hierarchy problems

Hyponyms: geological_phenomenon
 geological_phenomenon
 - earthquake, quake, temblor, seism
 - alluvial fan, alluvial cone
 - catastrophe, cataclysm
 - continental drift
 - deposit, sedimentation, alluviation
 - flood, inundation, deluge, alluvion
 - frost heave, frost heaving
 - volcanism
This book is about the Syberian Tri-colored Rabbit.
They eat carrots.

They=?

⇒ books
⇒ rabbits
⇒ book+rabbit
⇒ ..
Knowledge Sources – Corpora

Selectional constraints and preferences

This book is about the Syberian Tri-colored Rabbit. They are carnivorous.

They=?

⇒ books
⇒ rabbits
⇒ book+rabbit
⇒ ..
Knowledge Sources – Corpora

Smoothening

- context-based
- class-based (WordNet!)
- alternative
Knowledge Sources – Internet

Overcoming data sparseness problem
- Unseen word combinations
- Proper Names classification

Problems with Internet
- Noisy unbalanced data
- No possibility of sophisticated search/analysis
- Slow
Using knowledge

Acquired facts may be unreliable, contradicting, ..

I entered the room.

The ceiling was high. 10
The size was overwhelming. 4.2
The windows looked out to the bay. 3.7
The chandelier sparkled brightly. 0.45

\[
\frac{10^3 \cdot (f(a,b))^2}{f(a) \cdot f(b)}
\]
Using knowledge

Possible solutions

- Probabilistic reasoning
- Nonmonotonic reasoning
Conclusion

Good and reliable Semantic Knowledge is crucial for coreference resolution systems. Possible knowledge sources:

- WordNet
- Corpora
- Internet
- (Hand-coded) Knowledge Base

Current work

- Using Internet for Proper names classification (Geography)
- Baseline algorithm for coreference resolution