
A Computer Game Based on

Description Logic and Natural

Language Processing

Malte Gabsdil, Alexander Koller, Kristina Striegnitz

Computational Linguistics

Saarland University, Germany

�

gabsdil,koller,kris

�

@coli.uni-sb.de

The Saarbrücken Text-Adventure – p.1

Architecture of the Game Engine

Content
Determination

Model
Discourse

Reference
Resolution

Reference
Generation

RealizationParsing

Actions

A-Box: User Knowledge

T-Box

A-Box: World Model

The Saarbrücken Text-Adventure – p.2

Description Logic (DL) Crash Course

T(erminological)-Box:

rabbit

�

animal
everything that’s a rabbit is also an
animal

rabbit

� �

has.tail
everything that’s a rabbit is related to a
tail via the relation “has”

rabbit

� �

=1 has.tail
every rabbit is related to exactly one tail
via the “has” relation

rabbit

�

animal

�

fluffy
rabbis are things which are animals and
fluffy

�

has � (ear

�

long)
�

hare

�

rabbit
everything that is related (via “has”) to
something which is long and an ear is
either a rabbit or a hare

rabbit
� � zebra

if something is a rabbit, then it is not a
zebra

A(ssertional)-Box:

rabbit(bugs)
bugs is a rabbit

brother of(bugs,bunny)
bugs and bunny are related to each other
via the relation “brother of”

The Saarbrücken Text-Adventure – p.3

DL Theorem Provers

DL theorem provers provide a range of different inference services:

� Does concept C1 subsume C2?

� Give me all (direct) ancestors/descendants of concept C.

� Is individual a an instance of concept C?

� Give me all instances of concept C.

� Give me all (most specific) concepts that instance a belongs to.

� Give me all individuals that a is related to via the relation R.

�

� � �

The Saarbrücken Text-Adventure – p.4

Modelling the Game World (1)

The T-Box defines a hierarchy of the concepts that we want to use in the

game.

animal

�

object

frog

�

animal

alive

�

property

� � �

�

player object room exit property

pairwise disjoint

The Saarbrücken Text-Adventure – p.5

Modelling the Game World (2)

The A-Box defines which objects/individuals exist in the game world and

also specifies their properties.

rabbit(rabbit1)

box(box1)

apple(apple1)

green(apple1)

player(myself)

room(room1)

room(room2)

has-location(rabbit1,room2)

has-location(myself,room1)

has-location(box1,room1)

has-location(apple1,box1)

The Saarbrücken Text-Adventure – p.6

Modelling the Game World (3)

The T-Box furthermore defines some concepts that are important for

restricting the actions of the player.

here

� � �

has-location

� 1 � player

accessible

� � here

� �

has-location � here

�

�

has-location �
�

accessible

�

open

�
visible

� � here

� �

has-location � here

�

�

has-location �
�

visible

�

open
� �

�

has-location

� 1 �
�

open

� �
has-location

� 1 � player

� �

�

has-location �
�

has-location

� 1 �
�

open

� �

has-location

� 1 � player

�

The Saarbrücken Text-Adventure – p.7

Modelling the User Knowledge

� Shares the general knowledge (T-Box) with the system.

� The A-Box reflects what the player knows about the game world.

Initial A-Box:

player(myself)

The Saarbrücken Text-Adventure – p.8

Architecture of the Game Engine

Content
Determination

Model
Discourse

Reference
Resolution

Reference
Generation

RealizationParsing

Actions

A-Box: User Knowledge

T-Box

A-Box: World Model

The Saarbrücken Text-Adventure – p.9

Acting in the Game World

“take the green apple”

apple(a)

green(a)

box(b)

has-location(a,b)

. . .

apple(a)

green(a)

box(b)

has-location(a,myself)

. . .

The Saarbrücken Text-Adventure – p.10

Action Schemata

take(patient:X)

preconditions accessible(X), takeable(X),

not(inventory-object(X))

effects add: related(X myself has-location)

delete: related(X indiv-filler(X has-location) has-location)

output of the analysis of the user input

input for the generation of the responses

The Saarbrücken Text-Adventure – p.11

Action Schemata

take(patient:X)

preconditions accessible(X), takeable(X),

not(inventory-object(X))

effects add: related(X myself has-location)

delete: related(X indiv-filler(X has-location) has-location)

user add: related(X myself has-location)

knowledge delete: related(X indiv-filler(X has-location) has-location)

output of the analysis of the user input

input for the generation of the responses

The Saarbrücken Text-Adventure – p.11

Action Schemata

take(patient:X)

preconditions accessible(X), takeable(X),

not(inventory-object(X))

effects add: related(X myself has-location)

delete: related(X indiv-filler(X has-location) has-location)

user add: related(X myself has-location)

knowledge delete: related(X indiv-filler(X has-location) has-location)

output of the analysis of the user input

input for the generation of the responses

The Saarbrücken Text-Adventure – p.11

Architecture of the Game Engine

Content
Determination

Model
Discourse

Reference
Resolution

Reference
Generation

RealizationParsing

Actions

A-Box: User Knowledge

T-Box

A-Box: World Model

The Saarbrücken Text-Adventure – p.12

Parsing

Ralph and Denys’ parser for dependency grammar

� � ��� � � � � � �
	 �� � � � �� � �
det adj adj

object

��� ��� �
�

�����

��� :

 !

"# $

:

 %'& # ()+* ?
,* % " () * !

, !

& -. :
/021 354 6

7 8 $ � -� $

:
 " () -9 $!

:
;�;�<

=?>@ A �
�

�B�C�

� � :
 & # ()* " () !

"# $
:

 %D - $* ?

,* % 8D) * E , !

& -. :

/ F?G HI 6

� . "D :

 8D)* 7 7!

:
;B;C<

The Saarbrücken Text-Adventure – p.13

Semantic Construction

� � ��� � � � � � �
	 �� � � � �� � �

det adj adj

object

�� �� �
������
�� :

�� ! "

:

�#%$! & '�(?

) (# & ' (!

) �$ *+ :

,-. /0 12 3 " � *� "

:

� & ' *4 " �

56�6�7

8:9; < �
������
�� :

�$! & '�(& ' � ! "

:

�#= * "(?

) (# 3= ' (>) �$ *+ :

, ?:@ AB 1� + = :

� 3= '�(2 2�

56�6�7

C

DFE G�H I J KML NPO QR S TO Q J
nmod

nmod

patient

UWVXY Z
[

\]_^
`ab :

[
^

a cd e cb : neutdf g h cb : singij ck : de f

l
m

j n i : 5

l
o]o_m

The Saarbrücken Text-Adventure – p.14

Reference Resolution

Replace object descriptions in the output of the parser by the internal

name of the object that this description refers to.

take(patient: [frog(nmod:[ugly brown])])

take(patient: frog1)

Construct a DL concept from the object description and retrieve all

instances of this concept that are visible.

“the ugly brown frog”: visible
�

frog

�

ugly

�

brown

“the frog with the crown”: visible

�

frog

� �

has-detail � crown

The Saarbrücken Text-Adventure – p.15

Resolving Pronouns

� follows Strube’s “Never Look Back”, in Coling-ACL, 1998.

� discourse model (a list of entities) to keep track of salient entities

� entities of current sentence are more salient than entities of

previous sentence

� entities introduces by a definite NP are more salient than

entities introduced by an indefinite NP

� entities earlier in the sentence are more salient than those

metioned later

“take a banana, the red apple, and the green apple”

C red apple � green apple � banana

The Saarbrücken Text-Adventure – p.16

Content Determination

Input:
add: related(X myself has-location)

delete: related(X indiv-filler(X has-location) has-location)

Assumption: Verbalizing the “positive” effects is enough. The player can

then infer the “negative” ones.

� standard case: pass on

� special treatment for some special keywords (describe,

disgusting) and some actions (eat, inventory, open)

The Saarbrücken Text-Adventure – p.17

Detailed Descriptions of Objects

describe triggers detailed descriptions of individuals.

Two schemata for describing

1. an object

� retrieve all most specific concepts

� retrieve all role assertions

2. the location of the player:

� retrieve all objects that are in the same location

� retrieve all exits

� if the location is an open container (e.g. a couch), do the same

for room/location this container is in

Also does some aggregation.

The Saarbrücken Text-Adventure – p.18

Reference Generation

Input:

�

contains

�

couch1 �

�

frog1 � frog2 � apple1

� � �

Internal names of objects have to be described for the player.

Output:

�

contains

�

couch1 �

�

frog1 � frog2 � apple1

� �

couch(chouch1), frog(frog1), frog(frog2), apple(apple1)

def(couch1), indef(frog1), indef(frog2), indef(appl1)

�

� if the object is not an instance in the player A-Box, then use an

indefinite NP

� if the object is an instance in the player A-Box, then use a definite

NP

The Saarbrücken Text-Adventure – p.19

Indefinite NPs

� retrieve the object’s type (the most specific concept subsumed by

the concept object) from the world model

� retrieve the object’s color (if it has one) from the world model

The Saarbrücken Text-Adventure – p.20

Definite NPs

� follows Dale & Reiter 1995 and Dale & Haddock 1991

� find a description that uniquely identifies the object to the player

� build a concept adding properties until the concept only has one

instance, which is the target object

player A-Box:

apple(apple1),

frog(frog1), brown(frog1),

frog(frog2), green(frog1)

target: apple1

C

apple

target: frog1

C

frog

�

brown

The Saarbrücken Text-Adventure – p.21

Surface Realization

��� �

l1

�

�� �� �

chest1

� �� � �

l1

�

�� �

l1

�

	
 � �� � � �

�� �� �

crown1

�

�� � �

chest1

�

��� �
� ��

� �� �

chest1

�

�� � �
crown1

�

��� �

� �� �

crown1

�

�� �

chest1

�

	 �� � �

�� �

crown1

�

	�
 � �

���� � ��� �� ! " #%$ � �� ! �� �� ! " # $ &')(�* + !-, . + �� �� ! "$ ��/ * 0 + " 1 #%$. +�� � �� / * 0 + " #%$ �/ * 0 + �� / * 0 + " # 1

�

Tree Adjoining Grammar where every elementary tree in the lexicon has

exactly one piece of semantic information.

�

Use Ralph and Denys’ parser for selecting one elementary tree for each

piece of semantic information and assembling the elementary trees into a

sentence. The Saarbrücken Text-Adventure – p.22

Architecture of the Game Engine

Content
Determination

Model
Discourse

Reference
Resolution

Reference
Generation

RealizationParsing

Actions

A-Box: User Knowledge

T-Box

A-Box: World Model

The Saarbrücken Text-Adventure – p.23

	
	Architecture of the Game Engine
	Description Logic (DL)
Crash Course
	DL Theorem Provers
	Modelling the Game World (1)
	Modelling the Game World (2)
	Modelling the Game World (3)
	Modelling the User Knowledge
	Architecture of the Game Engine
	Acting in the Game World
	Action Schemata
	Architecture of the Game Engine
	Parsing
	Semantic Construction
	Reference Resolution
	Resolving Pronouns
	Content Determination
	Detailed Descriptions of Objects
	Reference Generation
	Indefinite NPs
	Definite NPs
	Surface Realization
	Architecture of the Game Engine

