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Description Logic (DL) Crash Course

T(erminological)-Box:

rabbit

�

animal
everything that’s a rabbit is also an
animal

rabbit

� �

has.tail
everything that’s a rabbit is related to a
tail via the relation “has”

rabbit

� �

=1 has.tail
every rabbit is related to exactly one tail
via the “has” relation

rabbit

�

animal

�

fluffy
rabbis are things which are animals and
fluffy

�

has � (ear

�

long)
�

hare

�

rabbit
everything that is related (via “has”) to
something which is long and an ear is
either a rabbit or a hare

rabbit
� � zebra

if something is a rabbit, then it is not a
zebra

A(ssertional)-Box:

rabbit(bugs)
bugs is a rabbit

brother of(bugs,bunny)
bugs and bunny are related to each other
via the relation “brother of”
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DL Theorem Provers

DL theorem provers provide a range of different inference services:

� Does concept C1 subsume C2?

� Give me all (direct) ancestors/descendants of concept C.

� Is individual a an instance of concept C?

� Give me all instances of concept C.

� Give me all (most specific) concepts that instance a belongs to.

� Give me all individuals that a is related to via the relation R.

�

� � �
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Modelling the Game World (1)

The T-Box defines a hierarchy of the concepts that we want to use in the

game.

animal

�

object

frog

�

animal

alive

�

property

� � �

�

player object room exit property

pairwise disjoint
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Modelling the Game World (2)

The A-Box defines which objects/individuals exist in the game world and

also specifies their properties.

rabbit(rabbit1)

box(box1)

apple(apple1)

green(apple1)

player(myself)

room(room1)

room(room2)

has-location(rabbit1,room2)

has-location(myself,room1)

has-location(box1,room1)

has-location(apple1,box1)
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Modelling the Game World (3)

The T-Box furthermore defines some concepts that are important for

restricting the actions of the player.

here

� � �

has-location

� 1 � player

accessible

� � here

� �

has-location � here

�

�

has-location �
�

accessible

�

open

�
visible

� � here

� �

has-location � here

�

�

has-location �
�

visible

�

open
� �

�

has-location

� 1 �
�

open

� �
has-location

� 1 � player

� �

�

has-location �
�

has-location

� 1 �
�

open

� �

has-location

� 1 � player

�
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Modelling the User Knowledge

� Shares the general knowledge (T-Box) with the system.

� The A-Box reflects what the player knows about the game world.

Initial A-Box:

player(myself)
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Acting in the Game World

“take the green apple”

apple(a)

green(a)

box(b)

has-location(a,b)

. . .

apple(a)

green(a)

box(b)

has-location(a,myself)

. . .
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Action Schemata

take(patient:X)

preconditions accessible(X), takeable(X),

not(inventory-object(X))

effects add: related(X myself has-location)

delete: related(X indiv-filler(X has-location) has-location)

output of the analysis of the user input

input for the generation of the responses
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Parsing

Ralph and Denys’ parser for dependency grammar
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Semantic Construction
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Reference Resolution

Replace object descriptions in the output of the parser by the internal

name of the object that this description refers to.

take(patient: [frog(nmod:[ugly brown])] )

take(patient: frog1 )

Construct a DL concept from the object description and retrieve all

instances of this concept that are visible.

“the ugly brown frog”: visible
�

frog

�

ugly

�

brown

“the frog with the crown”: visible

�

frog

� �

has-detail � crown
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Resolving Pronouns

� follows Strube’s “Never Look Back”, in Coling-ACL, 1998.

� discourse model (a list of entities) to keep track of salient entities

� entities of current sentence are more salient than entities of

previous sentence

� entities introduces by a definite NP are more salient than

entities introduced by an indefinite NP

� entities earlier in the sentence are more salient than those

metioned later

“take a banana, the red apple, and the green apple”

C red apple � green apple � banana
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Content Determination

Input:
add: related(X myself has-location)

delete: related(X indiv-filler(X has-location) has-location)

Assumption: Verbalizing the “positive” effects is enough. The player can

then infer the “negative” ones.

� standard case: pass on

� special treatment for some special keywords (describe,

disgusting) and some actions (eat, inventory, open)
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Detailed Descriptions of Objects

describe triggers detailed descriptions of individuals.

Two schemata for describing

1. an object

� retrieve all most specific concepts

� retrieve all role assertions

2. the location of the player:

� retrieve all objects that are in the same location

� retrieve all exits

� if the location is an open container (e.g. a couch), do the same

for room/location this container is in

Also does some aggregation.
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Reference Generation

Input:

�

contains

�

couch1 �

�

frog1 � frog2 � apple1

� � �

Internal names of objects have to be described for the player.

Output:

�

contains

�

couch1 �

�

frog1 � frog2 � apple1

� �

couch(chouch1), frog(frog1), frog(frog2), apple(apple1)

def(couch1), indef(frog1), indef(frog2), indef(appl1)

�

� if the object is not an instance in the player A-Box, then use an

indefinite NP

� if the object is an instance in the player A-Box, then use a definite

NP
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Indefinite NPs

� retrieve the object’s type (the most specific concept subsumed by

the concept object) from the world model

� retrieve the object’s color (if it has one) from the world model
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Definite NPs

� follows Dale & Reiter 1995 and Dale & Haddock 1991

� find a description that uniquely identifies the object to the player

� build a concept adding properties until the concept only has one

instance, which is the target object

player A-Box:

apple(apple1),

frog(frog1), brown(frog1),

frog(frog2), green(frog1)

target: apple1

C

apple

target: frog1

C

frog

�

brown
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Surface Realization

��� �
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�
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�

Tree Adjoining Grammar where every elementary tree in the lexicon has

exactly one piece of semantic information.

�

Use Ralph and Denys’ parser for selecting one elementary tree for each

piece of semantic information and assembling the elementary trees into a
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