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CRs in Spoken Dialogue Systems

System: What city are you leaving from?

User: Urbana Champaign.

System: Sorry, I’m not sure I understood what you said.
Where are you leaving from?

User: Urbana Champaign.

System: I’m still having trouble understanding you. . . . What
city are you leaving from?

User: Chicago.
[CMU Communicator – User-System]

→ System performs badly and sounds quite artificial.
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CRs in Human-Human Dialogue

Cust: I guess getting a car in London will not do me
much good in /uh/ Spain is that right?

Agent: I’m sorry? Getting a car . . . ?

Cust: Yeah I’ll need a car in Madrid.

Agent: OK.

Cust.: I’ll be returning on Thursday the fifth.

Agent: The fifth of February?

Cust.: /UHU/
[CMU Communicator – Human-Human]

→ How to convert these kinds of clarification strategies to
dialogue systems?
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Generating CRs in task-oriented dialogues

[Rieser and Moore] Implications for generating clarification
requests in task-oriented dialogues, ACL-05.

• Form-function mappings
• Human decision making on function features was

influenced by dialogue type, modality and channel
quality .
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Generating CRs in task-oriented dialogues

[Rieser and Moore] Implications for generating clarification
requests in task-oriented dialogues, ACL-05.

• Form-function mappings
→ We know how to generate surface forms of CRs once
we have the functions

• Human decision making on function features was
influenced by dialogue type, modality and channel
quality .
For dialogue systems we still don’t know:
→ How to set the function features?
→ How do these strategies perform?
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Approach

Assumptions

• Clarification strategies involve complex decision making
over a variety of contextual factors

• and exhaustive planning towards maximising a desired
outcome.

→ Apply reinforcement learning (RL) in the information state
update (ISU) approach.

What is RL?
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Framework for learning multimodal CRs

Overall approach:
MDP = (S, A, T , R)

1. Collect data on possible strategies in WOZ experiment.
→ Extract {A, S, R}

2. Bootstrap an initial policy using supervised learning in the
ISU approach.
→ Learn wizards’ decisions in context (T )

3. Optimise the learnt policy for dialogue systems using RL
(π* ≈ maxE [

∑
j≥i r(d , j)|si , a]).

→ How can we improve online reward measures r(d , j)?
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The SAMMIE-21 Data Collection

Figure: Multimodal Wizard-of-Oz data collection setup for an in-car
music player application, using the Lane Change driving simulator.
Top right: User, Top left: Wizard, Bottom: transcribers.

1SAMMIE stands for Saarbrücken Multimodal MP3 Player Interaction
Experiment (cf. for more details [Kruijff-Korbayová et al.], ENLG 2005).
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Experimental Setup

6 wizards, 24 subjects
User:

• User’s primary task is driving

• Secondary MP3 selection task

Wizard:

• Screen output options pre-computed, wizard freely talking

• Wizard “sees what the system sees"

Introducing uncertainty:

• Corrupted transcriptions by "word killer" agent (≈ acoustic
problems)

• Lexical and reference ambiguities by task and DB

• Pop-up questionnaire window "CLARIE" agent
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Evaluation

• 1772 turns and 17076 words.

• 774 wizard turns, 10.2% CRs (from CLARIE)

• User Satisfaction fairly high across wizards (15.0, δ=2.9,
range 5 to 25)

• Multimodality: “Most helpful" vs. distracting
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Corpus Requirements for Performance Modelling

• “Costs" caused by multi-modal dialogue acts .

• Vague task success by non directed task definition and
high ambiguity.

• In-car environment: cognitive workload on primary task.

• Need to explore → online reward measure!
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Currently applied (ad hoc) Reward Measures

• User satisfaction from questionnaires (offline)
e.g. Final Reward = 14.94;

• Binary task success (online)
e.g. Final Reward = +1|-1;

• Cost function of filled and confirmed slot values, dialogue
length etc. (online)
e.g. Final Reward = (expected length)+(filled slots)+(retrieving
info)+. . .

• US as defined in PARADISE (online)
e.g. Final Reward (US)=0.47*(Mean Recognition
Score)+0.21(Perception of task completion)+0.15*(elapsed
time);

→ Can we use existing (fine grained) evaluation schemes?
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RL and PARADISE

Performance modelling for RL in PARADISE [Walker], 2000.
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Performance modelling for RL in PARADISE [Walker], 2000.
UserSatisfaction(max TaskSuccess, min Costs)
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RL and PARADISE

Performance modelling for RL in PARADISE [Walker], 2000.
UserSatisfaction(max TaskSuccess, min Costs)
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Dialogue costs and dialogue acts

PARADISE:
• turn duration, elapsed time, number of turns, . . .

DATE:
• accounts for relations between cost features and features

indicating task success

• multiple views on one turn: conversational domain,
task/sub-task level, speech act

Example: For certain speech acts turn duration is positively
related to US [Walker and Passonneau], 2001)
→ present-info indicates task success
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Costs of Multimodal Dialogue Acts

ID Utterance Speaker Modality Speech act
1 Please play “Nevermind". user speech request
2a Does this list contain the

song?
wizard speech request info

2b [shows list with 20 DB
matches]

wizard graphic present info

3a Yes. It’s number 4. user speech provide info
3b [selects item 4] user graphic provide info

• Simultaneous actions

• Redundant actions
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Task success

PARADISE: AVM-style definition of task success

attribute possible values info flow
<depart-city> {Milano, Roma, Torino, Trento} to agent
<arrival-city> {Milano, Roma, Torino, Trento} to agent
<depart-range> {morning, evening} to agent
<depart-time> {6am, 8am, 6pm, 9pm} to user

PROMISE: [Beringer et al.], 2002

• information bits to measure (sub-)task success
info bits are defined to describe when a task is completed;

Example: "Plan an evening watching TV": film = [channel,
time] ∨ [title, time] ∨ [title, channel]∨ . . .
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Ambiguity in PROMISE

Your little brother likes to listen to heavy metal music. You
want to build him a playlist including three metal songs.
Make sure you have “Enter Sandman" on the playlist! Save
the playlist under the name “heavy guys".

main task (makePlaylist )

sub-tasks: search( item1 ), search(item2),

search(item3), playlist( name),

add( item1 , name), add(item2, name),

add(item3, name)

info-bits: item1 = [ title: “ Enter Sandman " ] ,
item2 =[ title ] ∨ [ album,track ] . . .

What to do when “Enter Sandman" has several matches in the
DB? How to measure task success online?
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Algorithm for flexible task success definition

1. Extend the information bit set until the description is
precise.

Example:
item1= [title: “Enter Sandman"]
If item1 has several matches in the DB:

item1= [title:“Enter Sandman"] ∧ [album]

→ Recursive online definition of task success based on
ambiguity.
2. Backing-off to evaluate final task success based on
“user’s goal".
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Policy shaping for immediate credit

Policy shaping:
argument the underlying reward structure with shaping function
F (bias reflecting prior knowledge).

M ′ = (S, A, T , R + F ) (1)

• Task success: give credit for every (grounded) information
bit.

• Mutlimodal cost function: F can be estimated with dynamic
shaping.
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What we haven’t solved so far . . .

• How to account for more user-centred reward measures?

• What about more qualitative measures ?

• What about cognitive load while driving?

→ Can we utilise “emotions" as continuos reward signal?
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Summary

Hypothesis
• Multi-modal clarification strategies involve complex

planning over a variety of contextual factors while
maximising user satisfaction.

Method
• Apply RL in the ISU update approach and model user

satisfaction by assigning continuous, local rewards in
combination with “delayed" rewards.

Expected outcome
• Learn flexible, context-adaptive strategy for clarification

subdialogues

• Define a portable online reward measure.
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In other words . . .
Asking the “right" clarification depends on the context and the
reward as the “goal".

Figure: Performance modelling for multi-modal in-car dialogues
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• Don’t frustrate the driver!
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Papers associated with this talk:

• Verena Rieser, Ivana Kruijff-Korbayová, Oliver Lemon: A
Framework for Learning Multimodal Clarification
Strategies . To be published in: Proceedings of SIGDIAL,
2005.

• Ivana Kruijff-Korbayová, Nate Blaylock, Ciprian
Gerstenberger, Verena Rieser, Tilman Becker, Michael
Kaisser, Peter Poller, Jan Schehl. An Experimental Setup
for Collecting Data for Adaptive Output Planning in a
Mutlimodal Dailogue System .Proceedings of European
Natural Language Generation Workshop, 2005.

• Verena Rieser and Johanna Moore. Implications for
Generating Clarification Requests in Task-oriented
Dialogues . Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL), 2005.
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Algorithm for flexible task success definition

U is user input string
DB is number of matches in the database
Initialize: task = makePlaylist

makePlaylist = subtask(item1) ∧ . . .∧ subtask(itemN)
item1, . . . , item N = alternativeSetList
alternativeSetList =infoSet1 ∨ infoSet2 ∨ . . .∨ infoSetN
infoSet1, infoSet2, . . . , infoSetN = infoBit1 ∧ infoBit2 ∧ infoBitN

For every U:
value = Parse(U)
If (DB != 0):

newSet = currentSet.add(infoBit)
alternativeSetList.add(newSet)

For every infoSet in alternativeSetList:
try to instantiate infoSet
currentUserGoal = infoSet instatiated
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Outline

Implications for reward measures



Appendix

Implications for a more informative reward

• Hypothesis1: Local reward measures lead to faster
learning.

→ Filled slots as local and task success as final reward

• Hypothesis2: The reward measure is the place to
incorporate complex domain knowledge

→ Reflect the relation between costs and speech acts
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Policy shaping

Policy shaping:
argument the underlying reward structure with shaping function
F (bias reflecting prior knowledge).

M ′ = (S, A, T , R + F ) (2)

F can be estimated with dynamic shaping.
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Reinforcement Learning (RL)

Figure: [Sutton and Barto], 1998.

The reward/performance function defines the “goal" of the RL
agent.
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MDP model for RL

• Markov Decision Process:
MDP = (S, A, T , R)

• Transition probability function:
Pa

ss = Pr{st+1 = s′|st = s, at = a}
• Reward signal:

Ra
ss = E{rt+1|st = s, at = a, st+1}

• Optimal policy π*:
Q(si , a) ≈ E [

∑
j≥i r(d , j)|si , a]
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Major features of RL

• Adaptation

• Evaluative feedback

• Delayed reinforcement

• Exploitation vs. exploration
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Greedy actions

Figure: [Sutton and Barto], 1998.

Greedy: always take the action with the highest reward.



Appendix

RL for dialogue systems

How does this work for us?
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