Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000 000	000 000 0000	00 00	000

A Framework for Learning Multimodal Clarification Strategies

Verena Rieser¹ Ivana Kruijff-Korbayová¹ Oliver Lemon²

¹Department of Computational Linguistics, Saarland University

> ²School of Informatics, University of Edinburgh

In affiliation with: TALK Project http://www.talk-project.org/

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Framework

he Data Collectior

Performance modelling

Future work

Summary 000

CRs in Spoken Dialogue Systems

- System: What city are you leaving from?
 - User: Urbana Champaign.
- System: Sorry, I'm not sure I understood what you said. Where are you leaving from?
 - User: Urbana Champaign.
- System: I'm still having trouble understanding you. ... What city are you leaving from?
 - User: Chicago.

[CMU Communicator - User-System]

 $\rightarrow\,$ System performs badly and sounds quite artificial.

otivation	Framework	The Data Collection	Performance modelling	Future work	Summary
)	000	000	000 000 0000	00	000

CRs in Human-Human Dialogue

Cust: I guess getting a car in London will not do me much good in /uh/ Spain is that right?

Agent: I'm sorry? Getting a car ...?

Cust: Yeah I'll need a car in Madrid.

Agent: OK.

Cust.: I'll be returning on Thursday the fifth. Agent: The fifth of February? Cust.: /UHU/ [CMU Communicator – Human-Human]

→ How to convert these kinds of clarification strategies to dialogue systems?

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000	000 000 0000	00 00	000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Motivation Previous work

Framework

The Learning Approach

The Data Collection

Experimental Setup Results form the WOZ study

Performance modelling

RL and Performance modelling Dialogue costs and multimodality Ambiguity and (sub-)task success

Future work

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000	000 000 0000	00 00	000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Motivation Previous work

Framework

The Learning Approach

The Data Collection

Experimental Setup Results form the WOZ study

Performance modelling

RL and Performance modelling Dialogue costs and multimodality Ambiguity and (sub-)task success

Future work

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000 000	000 000 0000	00 00	000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Motivation

Previous work

Framework

The Learning Approach

The Data Collection

Experimental Setup Results form the WOZ study

Performance modelling

RL and Performance modelling Dialogue costs and multimodality Ambiguity and (sub-)task success

Future work

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000 000	000 000 0000	00 00	000

Motivation

Previous work

Framework

The Learning Approach

The Data Collection

Experimental Setup Results form the WOZ study

Performance modelling

RL and Performance modelling Dialogue costs and multimodality Ambiguity and (sub-)task success

Future work

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000 000	000 000 0000	00 00	000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Motivation

Previous work

Framework

The Learning Approach

The Data Collection

Experimental Setup Results form the WOZ study

Performance modelling

RL and Performance modelling Dialogue costs and multimodality Ambiguity and (sub-)task success

Future work

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
•0	000	000	000 000 0000	00 00	000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Motivation Previous work

Framework The Learning Approach Results form the WOZ study Dialogue costs and multimodality Ambiguity and (sub-)task success Future work

Motivation	Framework
0.	000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Generating CRs in task-oriented dialogues

[Rieser and Moore] Implications for generating clarification requests in task-oriented dialogues, ACL-05.

- Form-function mappings
- Human decision making on function features was influenced by dialogue type, modality and channel

ation	Framework	The Data Collection
	000	000
		000

Motiv

00

Generating CRs in task-oriented dialogues

[Rieser and Moore] *Implications for generating clarification* requests in task-oriented dialogues, ACL-05.

Form-function mappings

 Human decision making on function features was influenced by dialogue type, modality and channel quality.

Motivation	Framework	The Data Collection	Performance modelling	Future v
0.	000	000	000	00
		000	000	00
			0000	

[Rieser and Moore] Implications for generating clarification requests in task-oriented dialogues, ACL-05.

Form-function mappings

 \rightarrow We know how to generate surface forms of CRs once we have the functions

 Human decision making on function features was influenced by dialogue type, modality and channel quality.

Motivation	Framework	The Data Collection	Performance modelling	Future work
00	000	000	000	00
		000	0000	00

[Rieser and Moore] Implications for generating clarification requests in task-oriented dialogues, ACL-05.

• Form-function mappings

 \rightarrow We know how to generate surface forms of CRs once we have the functions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Human decision making on function features was influenced by dialogue type, modality and channel quality.

Notivation	Framework	The Data Collection	Performance modelling	Future work	Summary
•	000	000	000 000 0000	00	000

[Rieser and Moore] *Implications for generating clarification* requests in task-oriented dialogues, ACL-05.

 Form-function mappings

 → We know how to generate surface forms of CRs once we have the functions

 Human decision making on function features was influenced by dialogue type, modality and channel quality.

For dialogue systems we still don't know:

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
0•	000	000	000 000 0000	00 00	000

[Rieser and Moore] Implications for generating clarification requests in task-oriented dialogues, ACL-05.

• Form-function mappings

 \rightarrow We know how to generate surface forms of CRs once we have the functions

 Human decision making on function features was influenced by dialogue type, modality and channel quality.

For dialogue systems we still don't know:

 \rightarrow How to set the function features?

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
0•	000	000	000 000 0000	00 00	000

[Rieser and Moore] Implications for generating clarification requests in task-oriented dialogues, ACL-05.

• Form-function mappings

 \rightarrow We know how to generate surface forms of CRs once we have the functions

 Human decision making on function features was influenced by dialogue type, modality and channel quality.

For dialogue systems we still don't know:

- \rightarrow How to set the function features?
- \rightarrow How do these strategies perform?

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000 000	000 000 0000	00 00	000

Motivation Previous work

Framework

The Learning Approach

The Data Collection Experimental Setup Results form the WOZ study

Performance modelling RL and Performance modelling Dialogue costs and multimodality Ambiguity and (sub-)task success

Future work Policy Shapi

User-centred rewards

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000 000	000 000 0000	00	000

Approach

Assumptions

- Clarification strategies involve complex decision making over a variety of contextual factors
- and exhaustive planning towards maximising a desired outcome.

 \rightarrow Apply reinforcement learning (RL) in the information state update (ISU) approach.

▶ What is RL?

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000	000 000 0000	00	000

Framework for learning multimodal CRs

Overall approach: $\overline{MDP} = (S, A, T, R)$

- 1. Collect data on possible strategies in WOZ experiment. \rightarrow Extract {*A*, *S*, *R*}
- 2. Bootstrap an initial policy using supervised learning in the ISU approach.

 \rightarrow Learn wizards' decisions in context (*T*)

Optimise the learnt policy for dialogue systems using RL (π* ≈ maxE[∑_{j≥i} r(d, j)|s_i, a]).
 → How can we improve online reward measures r(d, j)?

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	• ••	000 000 0000	00	000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Motivation Previous work Framework The Learning Approach The Data Collection Experimental Setup Results form the WOZ study Dialogue costs and multimodality Ambiguity and (sub-)task success Future work

Framework

The Data Collection

Performance modelling

Future work

Summary 000

The SAMMIE-2¹ Data Collection

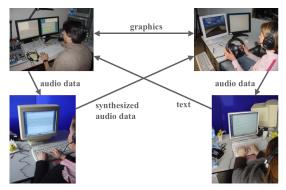


Figure: Multimodal Wizard-of-Oz data collection setup for an in-car music player application, using the Lane Change driving simulator. Top right: User, Top left: Wizard, Bottom: transcribers.

¹SAMMIE stands for Saarbrücken Multimodal MP3 Player Interaction Experiment (cf. for more details [Kruijff-Korbayová et al.]; ENLG 2005).

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000	000 000 0000	00	000

Experimental Setup

6 wizards, 24 subjects

User:

- User's primary task is driving
- Secondary MP3 selection task

Wizard:

- Screen output options pre-computed, wizard freely talking
- Wizard "sees what the system sees"

Introducing uncertainty:

- Corrupted transcriptions by "word killer" agent (≈ acoustic problems)
- Lexical and reference ambiguities by task and DB
- Pop-up questionnaire window "CLARIE" agent

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000 000	000 000 0000	00	000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Motivation Previous work Framework The Learning Approach

The Data Collection Experimental Setup Results form the WOZ study

Performance modelling RL and Performance modelling Dialogue costs and multimodality Ambiguity and (sub-)task success

Future work

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000	000 000 0000	00 00	000

- 1772 turns and 17076 words.
- 774 wizard turns, 10.2% CRs (from CLARIE)
- User Satisfaction fairly high across wizards (15.0, δ =2.9, range 5 to 25)

· Multimodality: "Most helpful" vs. distracting

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000	000 000 0000	00 00	000

Corpus Requirements for Performance Modelling

- "Costs" caused by multi-modal dialogue acts.
- Vague task success by non directed task definition and high ambiguity.
- In-car environment: cognitive workload on primary task.

• Need to **explore** → online reward measure!

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000 000	• 00 000 0000	00	000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Motivation Previous work

Framework

The Learning Approach

The Data Collection Experimental Setup Results form the WOZ study

Performance modelling

RL and Performance modelling

Dialogue costs and multimodality Ambiguity and (sub-)task success

Future work Policy Shapir

User-centred rewards

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000 000	000 000 0000	00	000

Currently applied (ad hoc) Reward Measures

- User satisfaction from questionnaires (offline)
 e.g. Final Reward = 14.94;
- Binary task success (online)
 e.g. Final Reward = +1|-1;
- Cost function of filled and confirmed slot values, dialogue length etc. (online)
 e.g. Final Reward = (expected length)+(filled slots)+(retrieving info)+...
- US as defined in PARADISE (online)

 e.g. Final Reward (US)=0.47*(Mean Recognition
 Score)+0.21(Perception of task completion)+0.15*(elapsed time);
- $\rightarrow\,$ Can we use existing (fine grained) evaluation schemes?

M	0	t	i٧	a	t	i	0	n	
0									

Framework

he Data Collection

Performance modelling

Future work

Summary 000

RL and PARADISE

Performance modelling for RL in PARADISE [Walker], 2000.

Framework

he Data Collection

Performance modelling

Future work

Summary 000

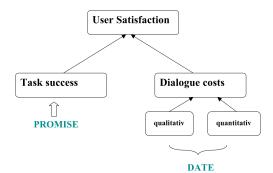
RL and PARADISE

Performance modelling for RL in PARADISE [Walker], 2000. UserSatisfaction(max TaskSuccess, min Costs)

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000 000	000 000 0000	00 00	000

RL and PARADISE

Performance modelling for RL in PARADISE [Walker], 2000. UserSatisfaction(max TaskSuccess, min Costs)



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000 000	000 •00 0000	00	000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Motivation Previous work

Framework

The Learning Approach

The Data Collection Experimental Setup Results form the WOZ study

Performance modelling

RL and Performance modelling Dialogue costs and multimodality

Ambiguity and (sub-)task success

Future work Policy Shaping User-centred rewards

Framework

The Data Collecti

Performance modelling

Future work

Summary 000

Dialogue costs and dialogue acts

PARADISE:

• turn duration, elapsed time, number of turns, ...

DATE:

- accounts for relations between cost features and features indicating task success
- multiple views on one turn: *conversational domain*, *task/sub-task level*, *speech act*

Example: For certain speech acts turn duration is positively related to US [Walker and Passonneau], 2001) → present-info indicates task success

Framework

The Data Collection

Performance modelling

Future work

Summary 000

Dialogue costs and dialogue acts

PARADISE:

• turn duration, elapsed time, number of turns, ...

DATE:

- accounts for relations between cost features and features indicating task success
- multiple views on one turn: *conversational domain*, *task/sub-task level*, *speech act*

Example: For certain speech acts turn duration is positively related to US [Walker and Passonneau], 2001) → present-info indicates task success

Framework

The Data Collection

Performance modelling

Future work

Summary 000

Dialogue costs and dialogue acts

PARADISE:

• turn duration, elapsed time, number of turns, ...

DATE:

- accounts for relations between cost features and features indicating task success
- multiple views on one turn: *conversational domain*, *task/sub-task level*, *speech act*

Example: For certain speech acts turn duration is positively related to US [Walker and Passonneau], 2001) → present-info indicates task success

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Framework 000 The Data Collection

Performance modelling

Future work

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Summary 000

Dialogue costs and dialogue acts

PARADISE:

• turn duration, elapsed time, number of turns, ...

DATE:

- accounts for relations between cost features and features indicating task success
- multiple views on one turn: conversational domain, task/sub-task level, speech act

Example: For certain speech acts turn duration is positively related to US [Walker and Passonneau], 2001) → present-info indicates task success

Framework

The Data Collection

Performance modelling

Future work

Summary 000

Dialogue costs and dialogue acts

PARADISE:

• turn duration, elapsed time, number of turns, ...

DATE:

- accounts for relations between cost features and features indicating task success
- multiple views on one turn: conversational domain, task/sub-task level, speech act

Example: For certain speech acts turn duration is positively related to US [Walker and Passonneau], 2001) → present-info indicates task success

Framework

The Data Collection

Performance modelling

Future work

Summary 000

Dialogue costs and dialogue acts

PARADISE:

• turn duration, elapsed time, number of turns, ...

DATE:

- accounts for relations between cost features and features indicating task success
- multiple views on one turn: conversational domain, task/sub-task level, speech act

Example: For certain speech acts turn duration is positively related to US [Walker and Passonneau], 2001) → present-info indicates task success

Framework

he Data Collection

Performance modelling

Future work

▲□▶▲□▶▲□▶▲□▶ ■□ のQ@

Summary 000

ID	Utterance	Speaker	Modality	Speech act
1	Please play "Nevermind".	user	speech	request
2a	Does this list contain the	wizard	speech	request info
	song?			
2b	[shows list with 20 DB	wizard	graphic	present info
	matches]			
3a	Yes. It's number 4.	user	speech	provide info
3b	[selects item 4]	user	graphic	provide info

- Simultaneous actions
- Redundant actions

Framework

he Data Collection

Performance modelling

Future work

▲□▶▲□▶▲□▶▲□▶ ■□ のQ@

Summary 000

ID	Utterance	Speaker	Modality	Speech act
1	Please play "Nevermind".	user	speech	request
2a	Does this list contain the	wizard	speech	request info
	song?			
2b	[shows list with 20 DB	wizard	graphic	present info
	matches]			
3a	Yes. It's number 4.	user	speech	provide info
3b	[selects item 4]	user	graphic	provide info

- Simultaneous actions
- Redundant actions

Framework

he Data Collection

Performance modelling

Future work

▲□▶▲□▶▲□▶▲□▶ ■□ のQ@

Summary 000

ID	Utterance	Speaker	Modality	Speech act
1	Please play "Nevermind".	user	speech	request
2a	Does this list contain the song?	wizard	speech	request info
2b	[shows list with 20 DB matches]	wizard	graphic	present info
3a	Yes. It's number 4.	user	speech	provide info
3b	[selects item 4]	user	graphic	provide info

- Simultaneous actions
- Redundant actions

Framework

he Data Collection

Performance modelling

Future work

▲□▶▲□▶▲□▶▲□▶ ■□ のQ@

Summary 000

ID	Utterance	Speaker	Modality	Speech act
1	Please play "Nevermind".	user	speech	request
2a	Does this list contain the	wizard	speech	request info
	song?			
2b	[shows list with 20 DB	wizard	graphic	present info
	matches]			
3a	Yes. It's number 4.	user	speech	provide info
3b	[selects item 4]	user	graphic	provide info

- Simultaneous actions
- Redundant actions

Framework

he Data Collection

Performance modelling

Future work

▲□▶▲□▶▲□▶▲□▶ ■□ のQ@

Summary 000

ID	Utterance	Speaker	Modality	Speech act
1	Please play "Nevermind".	user	speech	request
2a	Does this list contain the song?	wizard	speech	request info
2b	[shows list with 20 DB matches]	wizard	graphic	present info
3a	Yes. It's number 4.	user	speech	provide info
3b	[selects item 4]	user	graphic	provide info

- Simultaneous actions
- Redundant actions

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000 000	000 000 000	00 00	000

Outline

Motivation Previous work

Framework

The Learning Approach

The Data Collection Experimental Setup Results form the WOZ study

Performance modelling

RL and Performance modelling Dialogue costs and multimodality Ambiguity and (sub-)task success

Future work Policy Shaping User-centred rewards

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000	000 000 0000	00 00	000

Task success

PARADISE: AVM-style definition of task success

attribute	possible values	info flow
<depart-city></depart-city>	{Milano, Roma, Torino, Trento}	to agent
<arrival-city></arrival-city>	{Milano, Roma, Torino, Trento}	to agent
<depart-range></depart-range>	{morning, evening}	to agent
<depart-time></depart-time>	{6am, 8am, 6pm, 9pm}	to user

PROMISE: [Beringer et al.], 2002

 information bits to measure (sub-)task success info bits are defined to describe when a task is completed;

Example: "Plan an evening watching TV": film = [channel, time] ∨ [title, time] ∨ [title, channel]∨ ...

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000	000 000 0000	00 00	000

Task success

PARADISE: AVM-style definition of task success

attribute	possible values	info flow
<depart-city></depart-city>	{Milano, Roma, Torino, Trento}	to agent
<arrival-city></arrival-city>	{Milano, Roma, Torino, Trento}	to agent
<depart-range></depart-range>	{morning, evening}	to agent
<depart-time></depart-time>	{6am, 8am, 6pm, 9pm}	to user

PROMISE: [Beringer et al.], 2002

 information bits to measure (sub-)task success info bits are defined to describe when a task is completed;

Example: "Plan an evening watching TV": film = [channel, time] ∨ [title, time] ∨ [title, channel]∨ ...

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000	000 000 0 0 00	00 00	000

Task success

PARADISE: AVM-style definition of task success

attribute	possible values	info flow
<depart-city></depart-city>	{Milano, Roma, Torino, Trento}	to agent
<arrival-city></arrival-city>	{Milano, Roma, Torino, Trento}	to agent
<depart-range></depart-range>	{morning, evening}	to agent
<depart-time></depart-time>	{6am, 8am, 6pm, 9pm}	to user

PROMISE: [Beringer et al.], 2002

 information bits to measure (sub-)task success info bits are defined to describe when a task is completed;

Example: "Plan an evening watching TV": film = [channel, time] ∨ [title, time] ∨ [title, channel] ∨ ...

M	01	tiν	at	io	n
0					

Framework

he Data Collection

Performance modelling

Future work

Summary 000

Ambiguity in PROMISE

Your little brother likes to listen to heavy metal music. You want to build him a playlist including three metal songs. Make sure you have "Enter Sandman" on the playlist! Save the playlist under the name "heavy guys".

main task (makePlaylist)

sub-tasks: search(item1), search(item2), search(item3), playlist(name),

add(item1, name), add(item2, name),

add(item3, name)

info-bits: item1= [title: "Enter Sandman"], item2=[title] V [album,track]...

ion	Framework	The Data Collection	Performance modelling
	000	000	000
		000	000
			0000

Future work

Summary 000

Ambiguity in PROMISE

Your little brother likes to listen to heavy metal music. You want to build him a playlist including three metal songs. Make sure you have "Enter Sandman" on the playlist! Save the playlist under the name "heavy guys".

```
main task (makePlaylist)
sub-tasks: search(item1), search(item2),
search(item3), playlist( name),
add(item1, name), add(item2, name),
add(item3, name)
info-bits: item1=[title: "Enter Sandman"],
item2=[title] ∨ [album,track]...
```

Framework	The Data
000	000

Performance modelling

Future work

Summary 000

Ambiguity in PROMISE

Your little brother likes to listen to heavy metal music. You want to build him a playlist including three metal songs. Make sure you have "Enter Sandman" on the playlist! Save the playlist under the name "heavy guys".

main task (makePlaylist)
sub-tasks: search(item1), search(item2),
search(item3), playlist(name),
add(item1, name), add(item2, name),
add(item3, name)
info-bits: item1=[title: "Enter Sandman"],
item2=[title] ∨ [album,track]...

n	Framework	The Data Collection	P
	000	000	0
		000	

Performance modelling

Future work

Summary 000

Ambiguity in PROMISE

Your little brother likes to listen to heavy metal music. You want to build him a playlist including three metal songs. Make sure you have "Enter Sandman" on the playlist! Save the playlist under the name "heavy guys".

main task (makePlaylist)
sub-tasks: search(item1), search(item2),
search(item3), playlist(name),
add(item1, name), add(item2, name),
add(item3, name)
info-bits: item1=[title: "Enter Sandman"],
item2=[title] \[album,track]...

n	Framework	The Data Collection	Performar
	000	000	000
		000	000

Performance modelling

Future work

Summary 000

Ambiguity in PROMISE

Your little brother likes to listen to heavy metal music. You want to build him a playlist including three metal songs. Make sure you have "Enter Sandman" on the playlist! Save the playlist under the name "heavy guys".

```
main task (makePlaylist)
sub-tasks: search(item1), search(item2),
search(item3), playlist( name),
add(item1, name), add(item2, name),
add(item3, name)
info-bits: item1=[title: "Enter Sandman"],
item2=[title] \[ album,track]...
```

<i>Aotivation</i>	Framework	The Data Collection	Performance modelling	Future work	Sı
00	000	000	000	00	00
		000	0000	00	

Algorithm for flexible task success definition

1. Extend the information bit set until the description is precise.

Example: item1= [title: "Enter Sandman"] If item1 has several matches in the DB: item1= [title:"Enter Sandman"] ^ [album]

 \rightarrow Recursive online definition of task success based on ambiguity.

2. Backing-off to evaluate final task success based on "user's goal".

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000 000	000 000 0000	• o 00	000

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Motivation Previous work Framework The Learning Approach Results form the WOZ study Dialogue costs and multimodality Ambiguity and (sub-)task success

Future work

Policy Shaping

User-centred rewards

Motivation	Framework	The Data Collection	Performance modelling
00	000	000	000
		000	000

Future work

Summary 000

Policy shaping for immediate credit

Policy shaping: argument the underlying reward structure with shaping function F (bias reflecting prior knowledge).

$$M' = (S, A, T, R + F)$$
⁽¹⁾

- Task success: give credit for every (grounded) information bit.
- Mutlimodal cost function: *F* can be estimated with *dynamic shaping*.

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000 000	000 000 0000	00 00	000

Outline

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Motivation Previous work Framework The Learning Approach Results form the WOZ study Dialogue costs and multimodality Ambiguity and (sub-)task success

Future work

Policy Shaping User-centred rewards

Notivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000	000 000 0000	○○ ○●	000

What we haven't solved so far ...

How to account for more user-centred reward measures?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- What about more qualitative measures?
- What about cognitive load while driving?
- \rightarrow Can we utilise "emotions" as continuos reward signal?

Framework

he Data Collection

Performance modellin

Future work

Summary

Summary

Hypothesis

 Multi-modal clarification strategies involve complex planning over a variety of contextual factors while maximising user satisfaction.

Method

 Apply RL in the ISU update approach and model user satisfaction by assigning continuous, local rewards in combination with "delayed" rewards.

Expected outcome

- Learn **flexible**, **context-adaptive strategy** for clarification subdialogues
- Define a portable online reward measure.

In other words ...

Asking the "right" clarification depends on the context and the reward as the "goal".



Figure: Performance modelling for multi-modal in-car dialogues

▲□▶▲□▶▲□▶▲□▶ ■□ のQ@

Motivation 00	Framework 000	The Data Collection	Performance modelling 000 000 0000	Future work	Summary ○●○
			0000		

In other words ...

Asking the "right" clarification depends on the context and the reward as the "goal".

- Help to accomplish the task!
- Save costs!
- Don't distract the driver!
- Don't frustrate the driver!

In other words ...

Asking the "right" clarification depends on the context and the reward as the "goal".

- Help to accomplish the task!
- Save costs!
- Don't distract the driver!
- Don't frustrate the driver!

Motivation	Framework	The Data Collection	Performance modelling	Future work	Summary
00	000	000 000	000 000 0000	00 00	000

Papers associated with this talk:

- Verena Rieser, Ivana Kruijff-Korbayová, Oliver Lemon: A Framework for Learning Multimodal Clarification Strategies. To be published in: Proceedings of SIGDIAL, 2005.
- Ivana Kruijff-Korbayová, Nate Blaylock, Ciprian Gerstenberger, Verena Rieser, Tilman Becker, Michael Kaisser, Peter Poller, Jan Schehl. An Experimental Setup for Collecting Data for Adaptive Output Planning in a Mutlimodal Dailogue System. Proceedings of European Natural Language Generation Workshop, 2005.
- Verena Rieser and Johanna Moore. Implications for Generating Clarification Requests in Task-oriented Dialogues. Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL), 2005.

For Further Reading I

- Richard S. Sutton and Anrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, 1998.
- Marylin Walker and Rebecca Passoneau. DATE: A dialogue act tagging scheme for evaluation. Proceedings of the Human Language Technology Conference, 2001.
- Nicole Beringer and Ute Kartal and Katerina Louka and Florian Schiel and Uli Türk. PROMISE: A Procedure for Multimodal Interactive System Evaluation.

Proceedings of the Workshop Multimodal Resources and Multimodal Systems Evaluation, 2002.

For Further Reading II

Marylin Walker.

An Application of Reinforcement Learning to Dialogue Strategy Selection in a Spoken Dialogue System for Email. *Journal of Artificial Intelligence Research*, 2000.

Algorithm for flexible task success definition

```
U is user input string
DB is number of matches in the database
Initialize:
                task = makePlaylist
     makePlaylist = subtask(item1) \land \ldots \land subtask(itemN)
     item1, ..., item N = alternativeSetList
     alternativeSetList =infoSet1 ∨ infoSet2 ∨ ... ∨ infoSetN
     infoSet1, infoSet2, ..., infoSetN = infoBit1 \land infoBit2 \land infoBitN
For every U:
    value = Parse(U)
    If (DB != 0):
              newSet = currentSet.add(infoBit)
              alternativeSetList.add(newSet)
For every infoSet in alternativeSetList:
     try to instantiate infoSet
     currentUserGoal = infoSet instatiated
```


Outline

Implications for reward measures

Implications for a more informative reward

- Hypothesis1: Local reward measures lead to faster learning.
- \rightarrow Filled slots as local and task success as final reward
 - Hypothesis2: The reward measure is the place to incorporate complex domain knowledge
- \rightarrow Reflect the relation between costs and speech acts

Policy shaping

Policy shaping: argument the underlying reward structure with shaping function F (bias reflecting prior knowledge).

$$M' = (S, A, T, R + F)$$
⁽²⁾

F can be estimated with dynamic shaping.

Reinforcement Learning (RL)

Figure: [Sutton and Barto], 1998.

The reward/performance function defines the "goal" of the RL agent.

▲□▶▲□▶▲□▶▲□▶ ■□ のQ@

Appendix

MDP model for RL

- Markov Decision Process: MDP = (S, A, T, R)
- Transition probability function: $P_{ss}^{a} = Pr\{s_{t+1} = s' | s_t = s, a_t = a\}$
- Reward signal:
 - $R_{ss}^{a} = E\{r_{t+1} | s_{t} = s, a_{t} = a, s_{t+1}\}$
- Optimal policy π^* : $Q(s_i, a) \approx E[\sum_{j \ge i} r(d, j) | s_i, a]$

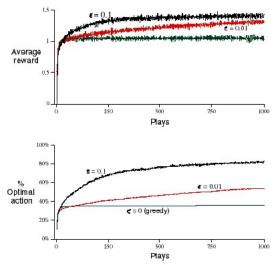
Major features of RL

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ

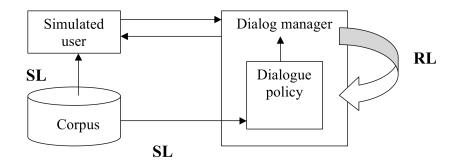
- Adaptation
- Evaluative feedback
- Delayed reinforcement
- Exploitation vs. exploration

Appendix 0 000000

Greedy actions



RL for dialogue systems



<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >