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An Example

The hunter shot by the teenager was only 30 years old.

.. is difficult for most people when reading
,by the teenager™



An Example II

The deer shot by the hunter was only used as a trophy.

.. IS easy to read for most people.

sStructure is identical for both sentences
=Initial interpretation (up to the by-phrase) is a
main clause both times

= But: Plausibility of that interpretation differs!
=Implausible main clause is easier to abandon

Goal

m Model this effect (and others) that
depend on semantic plausibility
(thematic fit)

m Model plausibility effects probabilistically,
using (semantically annotated) corpora
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Properties of Human Sentence
Processing

m Incrementality: Interpret incomplete input

m Shaped by experience: Frequent
words/structures are processed more quickly
and easily.

m Modularity: ERP results indicate distinct loci and
time courses for syntactic and semantic
processing

= Should be reflected in a model



PCFG-Based Models

m A structure's goodness is its probability
given by the probabilistic grammar

(Jurafsky, 1996; Crocker & Brants, 2000)

m Models predict difficulty if best (most
likely) structure changes

m Predict difficulty at by-PP in "NP V by-PP ...”
because best structure changes from main
clause to reduced relative interpretation
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m Models are
m Incremental v
m Experience-based v
(depending on grammar)
m But: Only syntactic!
= ,One module®

m Make the same predictions for both example
sentences



Adding semantics

m Rate syntactic structure by its plausibility
(based on its verb-argument-role triples)

m Compute ratings: Probabilistically assign
thematic roles to verb-argument pairs

m [The deer Ag] shot ... MC x
m [The deer Pat] shot ... RR

m Then create a modular architecture:

m Base final ranking of structures on predictions
from both syntax and semantics
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A Model of (Shallow)
Semantics

m Use thematic roles to link to semantics of
verb-argument relations

m Estimate plausibility of the verb-
argument relation as its probability:

Plausibilityy,raq = P(r,a,v, f,9f) =
P(v) x P(flv) x P(gflv, f) *
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Evaluation: Tasks

m Predict human plausibility ratings for
verb-role-argument triples

m Correlate predictions and ratings

m Reporting coverage and correlation
strength/significance

Predict the correct role

m Correct: Role with the highest human rating
m Predicted: Most probable role
m Reporting coverage and F score
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Test and Training Data

m Training Data: FrameNet corpus

Killing: [The deer Victim] shot [by the hunter Killer] ...

Verbs introduce frames (situation
descriptions), which define a set of possible

participants.

m Test Data: Human
plausibility ratings
McRae et al. (1998),
Trueswell et al. (1994)

shoot |deer agent 1.0
shoot |deer patient | 6.4
shoot |hunter |agent 6.9
shoot |hunter |patient | 2.8

Overcoming Data

Sparseness

13

m Without smoothing, we can predict only

6% of test items!

m Combine two complementary smoothing

methods:

m Good-Turing/Linear Interpolation: Assign

probabilities to unseen counts
m Class-based Smoothing of P(a|r,v,f,gf): Use

verb clusters from training data, WordNet

noun synsets
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Smoothing Results

. Correlation
Smoothing Coverage (Spearman's p)

No Smoothing 6% —
Class-based 19% 0.494, *
GT/LI 90.6% ns
Class-based +

0 X
GT/LI 90.6% 0.302,

How does this compare to...
Selectional Preference Models?

m Selectional preference models estimate the
goodness of an argument in a grammatical
relation to a verb

m Do they predict human data?

m Compare against standard models:
m Resnik 1993
= Clark & Weir 2001
= Li & Abe 1998

m Different approaches to class-based smoothing
using WordNet




Comparison to Selectional
Preference Models

Test Set Model Coverage p
Module 90.6% 0.302, *
Resnik 93.5% ns

McRae  Clarkaweir | 70.3% ns
Li&Abe 90.6% ns
Module 80.8% 0.422, **

Trueswell Resnik 69.2% 0.440, **
Clark&Weir 61.5% ns
Li&Abe 71.2% ns
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How does this compare to...
a standard Role Labeller?

m Giuglea&Moschitti (2004): Role labeller
for FrameNet roles.

m Use only standard features to build a vanilla
labeller

m F=80.5 on FN test data (gold boundaries)

m Use re-normalised confidence values for
prediction

m Both tasks: Correlation and Labelling
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Comparison to standard Role

Labeller
Correlation Labelling
Model |Coverage p Coverage F score
Baseline '] 1 100% 37.5
Module 90.6% 0.271, * 100% 59.4
Labeller 100% ns 100% 43.8

Labeller performs poorly: It doesn‘t pick up on
the semantic cues in the data.
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Multiple Arguments

m We need to be able to process multiple
arguments, each with its own array of
role predictions

m Optimal role assignment may change:

He packed the bag into the van.

Treating Multiple Arguments

m Find best overall role combination:
Viterbi-style

m Only seen role combinations are allowed
m Ensure that all roles exist in the frame
m Ensure that role combination makes sense

m Model predictions:

m He packed [the bag Goal]

m He packed [the bag Theme] [into the van
Goal]
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Conclusions

m A corpus-based way of modelling (shallow)
semantics

m Good performance in comparison to selectional
preference approaches

m Good performance in comparison to role labeller

m Ability to process multiple arguments per verb
and output optimal role set
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Future Work

m Combine semantic module with a
syntactic module (incremental
probabilistic parser)

m Define linking of model predictions to
observations (reading times)

m Model reading time data
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