Probability Estimation in Statistical Natural Language Processing

Sanjeev Khudanpur (co-workers: B. Jedynak, D. Karakos, A. Yazgan) Department of Electrical & Computer Engineering Center for Language & Speech Processing Johns Hopkins University, Baltimore, MD, U.S.A.

July 13, 2005

The Density Estimation Problem

Consider a random variable taking values in $X = \{1, 2, \dots, k\}$

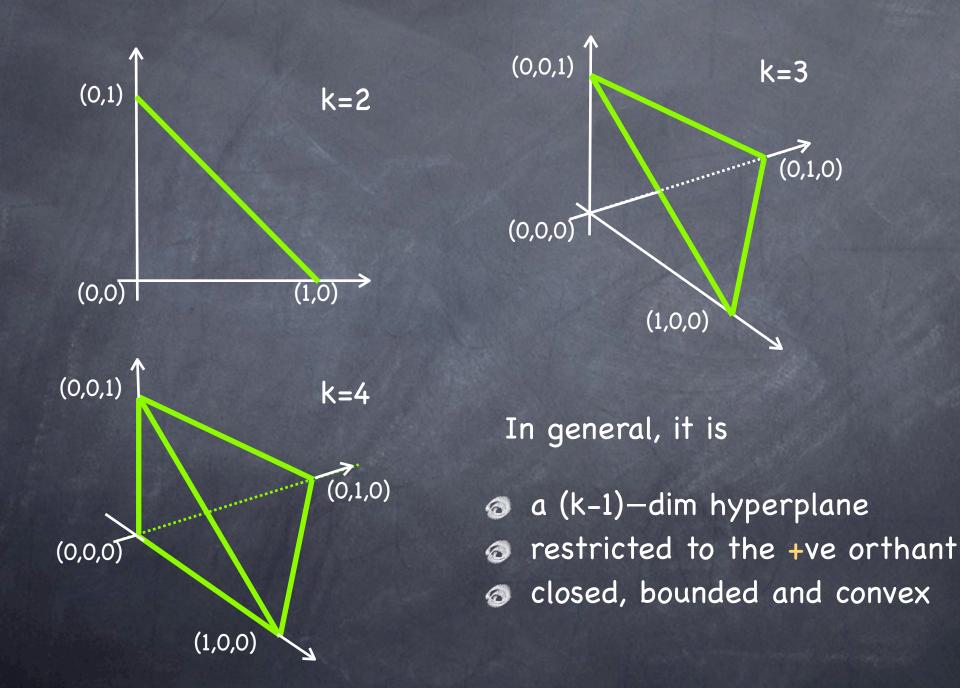
 \oslash Let p(.) denote a probability mass function on $\mathcal X$

 p(.) is usually unknown, and needs to be estimated from some sample data

Let the samples x₁,x₂,...,x_n be drawn independently, each according to p(.)

 ${old o}$ An estimator of p(.) is a function $\hat{p}: \mathcal{X}^n o \mathcal{P}^k$

The k-Dimensional Unit Simplex



Likelihood of the Observed Data

The likelihood of observing x₁,...,x_n under a probability mass function or pmf p is given by

$$p(x_1, \dots, x_n) = \prod_{t=1}^n p(x_t) = \prod_{x \in \mathcal{X}} [p(x)]^{n(x)}$$

where n(x) is the number of times the value x is seen in the sample x₁,...,x_n

$$n(x) = \sum_{t=1}^{n} \mathbf{1}(x_t = x)$$

0

0

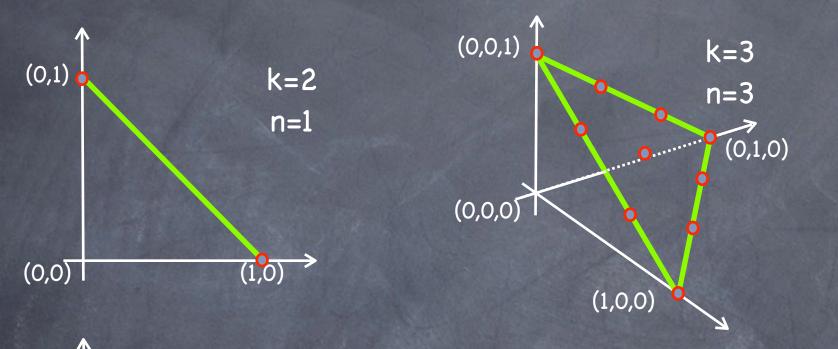
0

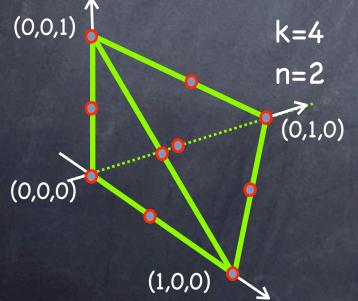
0

Note: permuting x₁,...,x_n does not change its likelihood

Types and Typical Sequences $= \exp\left\{\log \prod_{x \in \mathcal{X}} \left[\mathbf{p}(x)\right]^{n(x)}\right\}$ $p(x_1,\ldots,x_n) = \prod_{x \in \mathcal{X}} [p(x)]^{n(x)}$ $= \exp\left\{\sum_{x \in \mathcal{X}} n(x) \log p(x)\right\}$ $= \exp\left\{n\sum_{x\in\mathcal{X}}\frac{n(x)}{n}\log p(x)\right\}$ $= \exp\left\{n\sum_{x\in\mathcal{X}}\hat{p}(x)\log p(x)\right\}$ A sufficient statistic The type of a sequence is $\hat{p} \equiv \left(\frac{n(1)}{n}, \dots, \frac{n(k)}{n}\right)$ Number of sequences whose type is $\hat{p} = \frac{n!}{n(1)! n(2)! \cdots n(k)!}$ The number of distinct possible types is $\left|\mathcal{P}_{n}^{k}\right| = \binom{n+k-1}{k-1} \approx (n+1)^{k}$

Possible Types on the Simplex





In general, the possible types are
In general, the possible types are
reminiscent of the integer lattice in (k-1)—dimensional space
wevenly spaced" on the simplex
grow close together as n→∞

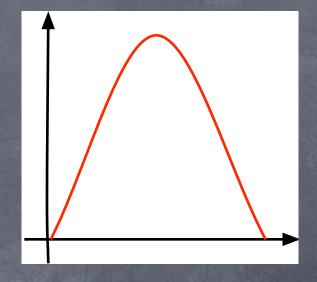
Likelihood, Entropy and Divergence $p(x_1, ..., x_n) = \exp \left\{ -n \left[\sum_{x \in \mathcal{X}} \hat{p}(x) \log \frac{1}{p(x)} \right] \right\}$ $= \exp \left\{ -n \left[-\sum_{x \in \mathcal{X}} \hat{p}(x) \log \hat{p}(x) + \sum_{x \in \mathcal{X}} \hat{p}(x) \log \frac{\hat{p}(x)}{p(x)} \right] \right\}$ $= \exp \left\{ -n \left[H(\hat{p}) + D(\hat{p} \| p) \right] \right\}$ Entropy Kullback-Leibler Divergence

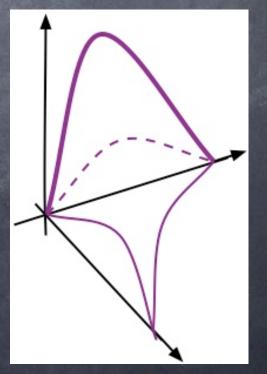
Note that the sample (not the choice of p) fixes the entropy

Therefore, if we wish to choose a p that assigns high likelihood to the observed sample, we much choose a p that is "close" in K-L divergence to \hat{p}

Properties of (Shannon) Entropy

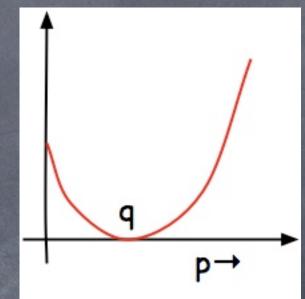
 \bigcirc 0 \leq H(p) \leq log(k) H(p) = 0 iff p is a degenrate pmf \oslash H(p) = log(k) iff p is the uniform pmf \oslash H(p) is a continuous function of p \oslash H(p) is a concave function of p \oslash H(p) is the nonparametric analog of smoothness for continuous densities

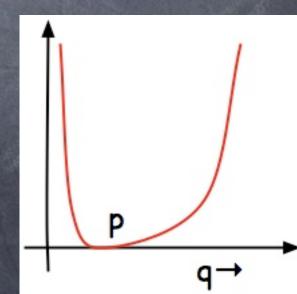




Properties of K-L Divergence

 Ø D(p||q) ≥ 0 with equality iff p == q D(pllq) is continuous in (p,q) \bigcirc D(p||q) is convex in (p,q) If p is fixed, it is convex in q Sor the uniform pmf \bigcirc D(p||u) = log(k) - H(p) Ø Maximize H(p) ⇔ Minimize D(p||u)





Popular Density Estimates

- Maximum likelihood estimation:
 - choose the type itself as the estimate of p

Bayesian estimation:

- assume a (prior) probability density π on the on the simplex of pmfs, e.g. the Dirichlet density
- assume a cost function L(p,q) for estimating p as q, e.g. ||p-q||²
- find the estimate q that minimizes expected cost $E_{\pi}[L(p,q)|x_1,...x_n]$
- Ø Often leads to an "add-β" estimate $q^{*}(x) = {n(x)+β}/{n+kβ}$

Maximum entropy estimation:

- Find a few marginals that may be reliably estimated from the type
- Consider all pmfs that agree with these marginals as admissible
- Choose the admissible pmf with the highest entropy
- The type is always admissible, but a "smoother" pmf near it is chosen

Variations on Maximum Entropy $\mathcal{M} = \{ p \in \mathcal{P}^k : p(A_j) = \hat{p}(A_j), \ j = 1, \dots, J \}$ $\boldsymbol{p^*}(x) = \frac{1}{Z(\Lambda)} \exp\left\{\sum_{j=1}^J \lambda_j \mathbf{1}(x \in A_j)\right\}$ Sentarge the class of admissible pmfs $\mathcal{OM} = \left\{ p \in \mathcal{P}^k : \hat{\mathbf{p}}(A_j) - \epsilon \le p(A_j) \le \hat{\mathbf{p}}(A_j) + \epsilon, \ j = 1, \dots, J \right\}$

 \odot p* is also the ML estimate from an exponential family Q

Seek something other than the maximum entropy pmf in \mathcal{M} $q^* = \arg \max_{q \in \mathcal{Q}} \left[q(x_1, \dots, x_n) - \rho \|\Lambda\|^2 \right]$

The Maximum Likelihood Set (new!)

- Recall that the observed type is a sufficient statistic for estimating p from the sample data
- Recall that the type can take only a finite number of values for a finite sample size
- Define a pmf p to be admissible if it assigns a higher likelihood to the observed type than to any other type!

$$\boldsymbol{p}(\hat{\boldsymbol{p}}) = \frac{n!}{n(1)! \cdots n(k)!} \prod_{x \in \mathcal{X}} [\boldsymbol{p}(x)]^{\boldsymbol{n}(x)}$$

0

0

0

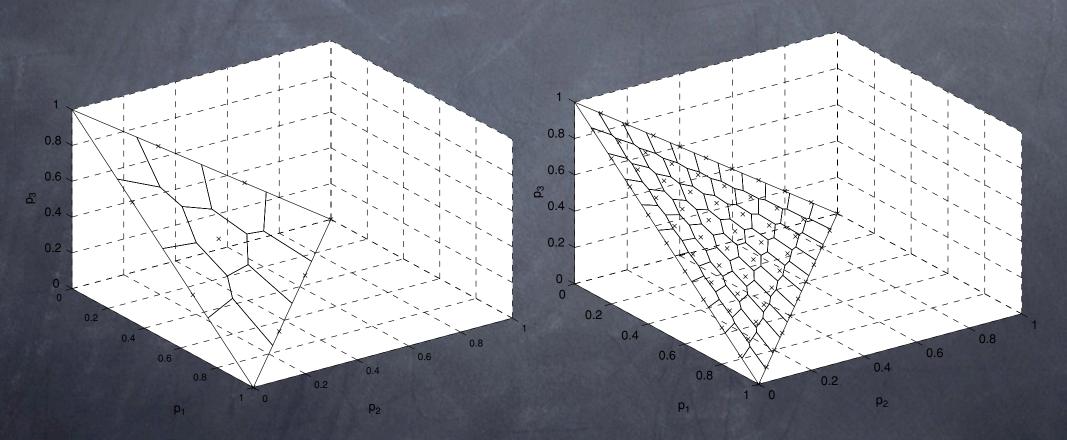
 $\mathcal{M} = \left\{ \boldsymbol{p} \in \mathcal{P}^k : \, \boldsymbol{p}(\hat{\boldsymbol{p}}) \ge \boldsymbol{p}(\hat{q}), \, \forall \, \hat{q} \in \mathcal{P}_n^k \right\}$

Key idea: the type we observed should be at least as likely as one we didn't

Visualizing the Max Likelihood Set

k=3 and n=3

k=3 and n=10



Characterizing the MLS

The maximum likelihood set is equivalently given by

$$\mathcal{M} = \left\{ \mathbf{p} \in \mathcal{P}^k : \frac{\hat{\mathbf{p}}(x)}{\hat{\mathbf{p}}(x') + \frac{1}{n}} \le \frac{\mathbf{p}(x)}{\mathbf{p}(x')} \le \frac{\hat{\mathbf{p}}(x) + \frac{1}{n}}{\hat{\mathbf{p}}(x')} \quad \forall x, x' \in \mathcal{X} \right\}$$

Severy MLS is a closed, bounded and convex set

ø bounded by linear hyper-planes

 \bigcirc very useful when searching numerically for p^*

Severy MLS contains the observed type, but no other type

the collection of MLS's tessellates the unit simplex

The diameter of every MLS is O(1/n) For every pmf in the MLS $\|p - \hat{p}\|_1 \le \frac{2(k-1)}{n}$

More Properties of the MLS

Severy pmf in the MLS is a strongly consistent estimate of p

 $\lim_{n \to \infty} \sup_{p \in \mathcal{M}} \|p - \tilde{p}\| = 0 \quad \tilde{p} - \text{almost surely}$

 \odot If n(x)>0, then p(x)>0 for every p in the MLS

There is a pmf with p(x)>0 for all x in X.

i.e. each MLS is guaranteed to contain "smooth" candidates

Search Faithfulness to the observed evidence:

0

ø if n(x)>n(x') then, for every pmf p in the MLS, p(x)≥p(x')

this property isn't guaranteed for the Bayesian estimates, Good-Turing, etc.

Choosing an Estimate from the MLS

If some reference pmf q is available (e.g. an estimate you would use for n=0), then it may be used to choose one of the admissible members of the MLS

 $p^* = \arg\max_{p \in \mathcal{M}} D(p \| q)$

If no q is available, q could be assumed to be uniform

0

Output Using this criterion to choose from the MLS has another desirable property, faithfulness to prior beliefs when the evidence is equivocal:

 $oldsymbol{n}$ n(x) = n(x') and $q(x) \ge q(x') \implies p^*(x) \ge p^*(x')$

This leads to considerable computational savings

Examples for Discussion

- ♂ The special case when n=1
- Setimating a unigram distribution for words using Zipf's law as a reference distribution
- Setimating a bigram (conditional) distribution using the unigram distribution as a reference distribution
- Implications for growing decision trees and random forests
- Implications for estimation of entropy & mutual information
- \bigcirc The case when $k \rightarrow \infty$ (i.e. unbounded alphabet sizes)

Concluding Remarks

Density estimation is at the core of a lot of statistical methods in language and speech processing

Spare data is always an issue (Google notwithstanding)

Learning from small samples is vital; methods for incorporating structural constraints in these estimates need to be investigated further

The MLS based estimate is a parameter-free technique that characterizes the uncertainty of the estimate, and provides a means for incorporating prior domain knowledge